Получение деминерализованной воды. Особенности деминерализации воды

Дистиллированную (деминерализованную) воду в хими­ческих лабораториях применяют для многих целей: для приготовления растворов, споласкивания посуды после мытья и т. д.

Получение дистиллированной воды

Дистиллированной называют воду, почти не содержа­щую неорганических и органических веществ, получае­мую путем перегонки водопроводной воды, т. е. воду пре­вращают в пар и конденсируют.

Для получения дистиллированной воды существуют перегонные кубы различной величины и производитель­ности.

Перегнанную воду собирают в стеклянные бутыли, причем трубку (конец холодильника) вставляют в горло бутыли, уплотняя ватой. Это предохраняет воду от попа­дания в нее пыли.

Для лабораторий, расходующих сравнительно неболь­шое количество дистиллированной воды, очень удобен авто­матически действующий электрический перегонный куб ПК-2. Схема этого аппарата показана на рис. 8. Перегон­ный куб состоит из камеры испарения 11, с вмонтирован­ным в ее дно электронагревателем 15, конденсатора пара / и устройства для автоматического наполнения камеры водой или уравнителя, 10. Избыток воды выливается через резиновую трубку, надетую на ниппель 17. Эту теплую во­ду можно использовать для мытья посуды.

Через ниппель 3 по резиновой трубке вода из водопро­вода непрерывно поступает в рубашку конденсатора /, г де она подогревается, а затем через уравнитель попадает


в камеру 11. Пары воды через патрубок 5 поступают в кон­денсатор /, и образующийся конденсат стекает через нип­пель 4 по резиновой трубке в приемник для дистиллирован­ной воды. Чтобы предотвратить повышение давления пара в конденсаторе, в корпусе последнего сделано отверстие 2 для выхода избыточного пара.

Прибор включают в электрическую сеть с помощью провода, выходящего через втулку 14 кожуха 12. На пос­леднем имеется клемма заземления 13.

Электронагреватель необходимо периодически очищать механическим путем от накипи. Чем больше жесткость во­допроводной воды, тем чаще следует проводить очистку. Производительность перегонного куба ПК-2 достигает 4-5 л[ч\ мощность электронагревателя 3,5-4 кет.

В настоящее время промышленность выпускает более усовершенствованные перегонные аппараты Д-1 (рис. 9). Аппарат Д-1 отличается от описанного выше конструкци­ей нагревательного элемента и уравнителя. Производи­тельность аппарата - около 5 л[ч.

Дистиллированная вода всегда содержит незначитель­ные примеси посторонних веществ, попадающих в нее или из воздуха в виде пыли, или вследствие выщелачивания стекла посуды, в которой хранится вода, или в виде следов металла трубки холодильника.

Кроме того, вместе с парами воды в приемник попадают растворенные в воде газы (аммиак, двуокись углерода), а также некоторые летучие органические соединения, кото­рые могут присутствовать в воде, и, наконец, соли, кото­рые попадают в дистиллят вместе с мельчайшими капель­ками воды, уносимыми паром.

Для некоторых аналитических работ недопустимо при­сутствие в дистиллированной воде следов металлов. Для удаления их предложен способ * обработки дистиллиро­ванной воды активированным углем. На 1 л дистиллиро­ванной воды прибавляют 1 каплю 2,5%-ного очищенного раствора аммиака и 0,4-0,5 г активированного угля БАУ, измельченного до зерен диаметром 0,15-0,20 мм. Воду встряхивают с углем, затем дают отстояться и несколько раз снова встряхивают, дают постоять не больше 5 мин,

* Медннкоиская Е. II., Да л м а т о в а Т. В., Су­ворова Е. Р., Бюлл, научн.-техи. информации МГ и ОН СССР, № .5 (1957).. .


После чего отфильтровывают через беззольный фильтр. Перв ые 200-250 мл фильтрата отбрасывают. Полученный фильтрат проверяют на тот ион, который будут определять.

Рис. 8. Принципиальная схема

перегонного куба ПК-2 для

получения дистиллированной

/ - конденсатор; 2 - отверстие для выхода избыточного пара; 3 - нип­пель для соединения с линией во­допровода; 4 - ниппель для спус­ка дистиллированной воды; 5 - па­трубок, через который пар посту­пает в конденсатор; 6 - гайка; Г - фланец; 8 - сливная труба; 9 -воронка уравнителя; 10 - урав­нитель; 11 - камера испарения; 12 - металлический кожух; 13 - Клемма заземления; 14 - втулка для ввода провода; 15 - электронагре­ватель; 16 - кран для выпуска воды из камеры испарения; 17 - ниппель для спуска воды из урав­нителя; 18 - крестовина уравни­теля.

Однако и такую воду полезно дополнительно очистить обработкой ее раствором дитизона. Для этого в большую делительную воронку до половины ее наливают дистилли-


рованную воду, добавляют в среднем около 10% от объе­ма взятой воды 0,001 %-ного раствора дитизона в четырех -хлористом углероде и, плотно закрыв воронку, хорошо встряхивают ее в течение нескольких минут. Дают жидкос­ти отстояться, сливают окрашенный раствор дитизона, добавляют такое же количество свежего раствора его, снова встряхивают и повторяют экстракцию до тех пор, пока раствор дитизона не перестанет изменять свой цвет, т. е. будет оставаться зеленым. Когда это будет достигну-

Рис. 10. Аппарат АА-1 для получения

апирогенной воды: 1 - конденсатор; 2 - камера для воды; 3 - конденсационная камера; 4 - вентиль; 5 - ниппель; 6 - предохранительная щель; 7 - паровая труба; S - уловитель; 9 - ко­жух; 10 - камера испарения; // - электро­нагреватель; 12 - дно; 13 - спускной кран; 14 - болт заземления; 15 - сливная труб­ка; 16 - виит дозатора; 17 - контргайка; 18 - дозатор; 19 -кронштейн; 20 - коль­цо резиновое; 21 - фильтр; 22 - сосуд стеклянный; 23 - зажим; 24 - капельница; 25 - сборник-уравнитель; 26 - штуцер; 27 - водоуказательное стекло.

то, к воде добавляют чистый четырех хлористый углерод и основательно встряхивают для удаления из воды раство­рившегося в ней дитизона.

Чтобы очистить дистиллированную воду от органичес­ких веществ, ее подвергают вторичной перегонке, добавляя в воду немного (~0,1 г/л) марганцевокислого калия и нес­колько капель серной кислоты. Такую воду, не содержа­щую следов органических веществ, называют апирогенной. Для получения ее применяют аппарат АА-1 (модель 795). Этот аппарат мощностью - 8 кет рассчитан на напря­жение 220 в и имеет производительность 10 л/ч (рис. 10). Другой такой же дистиллятор *, но мощностью 18 кет имеет производительность 20 л/ч.

* Оба прибора выпускает Ленинградское производственное объединение «Красногвардеец» (Ленинград, П-22, Инструменталь­ная ул., д. 3).


Получаемая при помощи этих аппаратов вода отвечает требованиям Государственной фармакопеи. В качестве химических реагентов для очистки воды используются: марганцевокислыи калий х. ч., алюмокалиевые квасцы х. ч. и Na 2 HP0 4 фармакопейный или ч. д. а. Растворы этих реактивов автоматически поступают в перегоняемую воду строго по расчету, приведенному в описании, которое при­лагается к аппаратам.

Для задержания солей перегонный аппарат следует снаб­дить насадкой Кьельдаля или так называемой «чешской» насадкой, которая надежнее насадки Кьельдаля.

Когда нужна очень чистая вода, принимают особые меры, предупреждающие попадание в воду каких-либо примесей, например используют серебряный или кварце­вый холодильник. Приемник (также кварцевый или посере­бренный, или из специальных сортов стекла, не подвергаю­щихся выщелачиванию) закрывают хлоркальциевой труб­кой, наполненной соответствующим поглотителем, чтобы воспрепятствовать попаданию в перегнанную воду амми­ака, двуокиси углерода, сероводорода и других примесей. Приемник можно также закрыть клапаном Бунзена (см. стр. 65), что является вполне достаточной мерой предосто­рожности от попадания из воздуха примесей во время пере­гонки. Само собой понятно, что примеси, летучие с водя­ным паром, должны быть предварительно удалены из воды (газы - кипячением, органические вещества - окисле­нием и т. д.).

Очень удобен также самодействующий аппарат с кача­ющимся держателем (по Штадлеру) для получения дистил­лированной воды (рис 11). Он состоит из колбы емкостью 1,5 л с встроенным распределителем и холодильника. Аппарат укреплен на штативе, снабженном качающимся держателем. Вода подается в холодильник, подогревается в нем и поступает в распределитель. Когда колба в резуль­тате испарения воды становится легче, аппарат автомати­чески поворачивает ее таким образом, что нагретая вода из распределителя поступает в колбу и восстанавливает там прежний уровень. Избыток воды спускается в сток. Откры­тая трубка в верхней части распределителя служит только для выравнивания давления внутри колбы с атмосферным. На нижнем конце холодильника находится защитная во­ронка, предохраняющая от попадания загрязнений в при­емник для дистиЛ!йВОБ2ННОИ_воды

бидистиллята: 1 - колба для перегоняемой водопро­водной воды; 2 - холодильник; 3 - во­ронка; 4 - колба для испарения ди­стиллята; 5 - защитные воронки.

Для получения бидистиллята применяют специальные установки, обеспечивающие высокое качество получаемой воды. Одна из таких установок показана на рис. 12. Колбу 1 емкостью 1,5 л нагревают или при помощи электричест­ва, или газовой горелкой. Вода в колбу поступает непрерыв-


но из рубашки холодильника 2. Подачу воды следует отре­гулировать так, чтобы компенсировать испарившуюся во­ду. Колба при этом должна быть заполнена приблизитель­но на две трети. Сконденсированная вода из холодильника стекает через воронку 3 в колбу 4. Для предупреждения попадания загрязнений над воронкой 3 укрепляют защит­ную воронку 5, имеющую несколько больший диаметр, чем воронка 3.

Когда в колбе 4 накопится около 1 л дистиллированной воды, начинают обогрев этой колбы и собирают бидистил-лят в специальный приемник. Нужно заботиться, чтобы в него не попадала пыль, для чего в приемник для бидистил­лята вставляют через ватную или другую пробку воронку небольшого размера, а над ней-защитную воронку 5.

Чтобы предупредить поглощение бидистиллятом двуо­киси углерода, аммиака и других растворимых в воде лету­чих примесей из воздуха, приемник для бидистиллята мож­но оборудовать специальными поглотительными прибора­ми (типа хлоркальциевых трубок). Внутреннюю поверх­ность приемника необходимо покрыть тонким слоем пара­фина или иного инертного покрытия.

Все приспособление укрепляют на железном штативе, соответствующим образом оборудованном. Крепление кол­бы и холодильника.показано на рис. 12 справа.

Нужно помнить, что дважды перегнанная дистиллиро­ванная вода (так называемый бидистиллят) нужна не всег­да, а только для особо точных работ. В огромном боль­шинстве случаев в лаборатории применяют обычную дистил­лированную воду, вполне удовлетворяющую требованиям по чистоте.

Качество каждой вновь поступающей в лабораторию партии дистиллированной воды (а также стоявшей дли­тельное время в лаборатории) следует контролировать, определяя рН и солевой состав.

Для определения рН воды около 25 мл ее наливают в чистый стакан и добавляют несколько капель метилового оранжевого. Чистая вода нейтральна, и поэтому окраска индикатора в ней должна быть желтой; прибавление одной капли 0,04 н. раствора серной или соляной кислоты долж­но вызвать появление розового оттенка.

Для испытания на примеси небольшое количество воды (достаточно 5-10 капель) выпаривают на платиновой пла­стинке, в крайнем же случае - на чистом часовом стекле.


Чистая вода после выпаривания не должна давать остатка, в противном случае на пластинке остается небольшой на­лет.

О качестве дистиллированной или деминерализованной воды судят также по электропроводности. Удельное сопро­тивление хорошей дистиллированной воды должно быть не меньше 5-Ю 5 ом~ 1 -см~ 1 .

Нужно взять за правило не закрывать бутыли с запа­сом дистиллированной воды необработанными корковыми

Рис. 13. Бутыль, оборудован- Рис. 14. Бутыль с тубусом
ная для хранения дистиллиро- для хранения дистиллиро­
ванной воды. ванной воды.

или резиновыми пробками (см. стр. 179); лучше всего та- (кие бутыли закрывать стеклянными притертыми проб­ками.

Очень удобно также пользоваться бутылью с тубусом! около дна (рис. 14). Тубус прочно закрывают резиновой пробкой, в середине которой просверлено отверстие для коленчатой трубки. При заполнении бутыли водой колен­чатая трубка должна быть в вертикальном положении. Чтобы взять воду, коленчатую трубку наклоняют в сторо­ну ее открытого конца, а затем снова приводят в исходное


положение. Это приспособление дает возможность рабо­тать аккуратно и предохраняет воду от загрязнения.

Продолжительное хранение дистиллированной воды в стеклянной посуде, даже из хорошего химически стойко­го стекла, всегда приводит к ее загрязнению продуктами выщелачивания стекла. Поэтому дистиллированную воду долго хранить нельзя и лучше держать ее в старых буты­лях, уже не один раз использовавшихся для этой цели и достаточно выщелоченных. Для особо ответственных ра­бот (например, приготовление цветных стандартов, титро­ванных растворов, проведение некоторых колориметри­ческих определений и т. д.) следует брать только свежепе-регнанную воду или даже бидистиллят. Например, для приготовления раствора серноватисто кисло го натрия нель­зя применять воду, получаемую из перегонного аппарата с медным нелуженым холодильником. Такую воду нужно перегнать еще раз, избегая попадания даже следов меди, так как медь может каталитически ускорить разложение соли.

При приготовлении растворов щелочей стремятся осво­бодить воду от С0 2 . Для этого или пропускают через воду в течение нескольких часов воздух, освобожденный от С0 2 , или же воду кипятят. В последнем случае еще горячую воду переливают в сосуд, в котором будут готовить рас­твор, и закрывают его пробкой, снабженной хлоркальцие-вой трубкой, чтобы избежать попадания С0 2 из воздуха. Для хранения дистиллированной воды так, чтобы она не поглощала С0 2 из воздуха, можно использовать колбу, оборудованную, как показано на рис. 15. В резиновую пробку с двумя отверстиями вставляют в одно отверстие хлоркальциевую трубку, заполненную аскаритом, во вто­рую - сливную трубку, загнутую П-образно. На наруж­ный конец сливной трубки насаживают резиновую трубку с пружинным зажимом. Дистиллированную или деминера­лизованную воду нужвд предварительно прокипятить в этой же колбе не менее 30 мин. После окончания кипяче­ния закрывают колбу обычной пробкой, дают воде немно­го остыть и затем плотно закрывают колбу с еще теплой во­дой резиновой пробкой, оборудованной так, как описано выше. Открыв зажим, через хлоркальциевую трубку вду­вают в колбу воздух до тех пор, пока из сливной трубки не начнет вытекать вода. Тогда вдувание воздуха прекра­щают и опускают зажим Мора. Сливная трубка будет дей-

ствовать как сифон. Чтобы взять воду, достаточно лишь открыть зажим.

Если воду нужно освободить от растворенного в ней кислорода, поступают следующим образом. Во­ду нагревают до 75-85° С и опу­скают в нее кусочки сплава Ву-да. Когда последний расплавится, воду взбалтывают и перегоняют в условиях, предотвращающих попа­дание воздуха. Приемник можно обо­рудовать V-образной предохрани--тельной трубкой, наполненной или щелочным раствором пирогаллола, или другим поглотителем кислорода, например очень тонкими палочками желтого фосфора. В последнем слу­чае предохранительную трубку сле­дует обернуть черной бумагой, чтобы защитить фосфор от действия света. Поглощение кислорода фосфором идет только при температуре не ниже 16-18° С.


Похожая информация.



Предназначена прежде всего для нормальной и экономичной работы систем и установок, использующих особо чистую воду. Деминерализованная вода -это вода из которой удалены практически все соли. Обессоленная вода широко используется в промышленности, медицине, при эксплуатации различных приборов, устройств и оборудования, для хозяйственно-бытовых нужд и других целей.

Цены на воду приведены с учётом стоимости ее доставки в Екатеринбурге.
При первом заказе воды дополнительно выкупается многооборотная тара.

В ряде случаев присутствующие в воде соли даже в небольших количествах могут создавать определённые проблемы при использовании воды в производстве или быту. Целью получения деминерализованной, т.е.обессоленной воды является максимально возможное при разумных затратах извлечение из исходной воды, содержащихся в ней минеральных веществ.

Широкое распространение получили способы уменьшения содержания в воде солей жёсткости с помощью ионообменных установок и снижения общего солесодержания методом дистилляции. Умягчённая вода в первом случае и дистиллированная - во втором широко применяются в частности в теплоэнергетике и медицине. Первый способ относительно дёшев и производителен,но убирая соли кальция и магния он оставляет остальные и даже увеличивает их концентрацию. Дистиллированная вода очень чистая, практически обессоленная,но дорогая.Высокая трудоёмкость и себестоимость ограничивают её широкое использование.

Деминерализованная вода может быть получена также путем многостадийной глубокой очистки. Это достигается путем использования на заключительных её этапах наиболее эффективных мембранных установок обратного осмоса. Суммарное содержание минеральных веществ при этом снижается по сравнению с исходным в сотни раз. В этой связи очистка воды методом обратного осмоса может оказаться наиболее рентабельным способом её деминерализации, лишённым к тому же недостатков как ионнообменных, так и дистилляционных технологий.

Деминерализованная посредством обратного осмоса (обратноосмотическая) вода «Кристальная-деминерализованная» производится компанией ООО «Питьевая вода» в соответствии с утверждёнными техническими условиями (ТУ 0132-003-44640835-10) путём глубокой доочистки на промышленных обратноосмотических мембранных установках предварительно подготовленной воды из подземного источника (скв. 1р Института геофизики УрО РАН). Подготовка воды включает её предварительную механическую очистку (фильтрацию) и ультрафиолетовую бактерицидную обработку (обеззараживание).

Вода «Кристальная-деминерализованная» по физико-химическим показателям должна соответствовать приведенным в таблице требованиям, установленным ТУ 0132-003-44640835-10

Наименование показателя

Величина допустимого уровня

НД на методы исследования

1. Массовая концентрация остатка после выпаривания, мг/дм3 , не более

ГОСТ 6709-72

2. Массовая концентрация нитратов (NО3) , мг/дм3 , не более

ГОСТ 6709-72

3. Массовая концентрация сульфатов (SO4), мг/дм3, не более

ГОСТ 6709-72

4. Массовая концентрация хлоридов (Сl), мг/дм3, не более

ГОСТ 6709-72

5. Массовая концентрация алюминия (Аl), мг/дм3, не более

ГОСТ 6709-72

6. Массовая концентрация железа (Fe), мг/дм3, не более

ГОСТ 6709-72

7. Массовая концентрация кальция (Сa), мг/дм3, не более

ГОСТ 6709-72<

8. Массовая концентрация меди (Сu), мг/дм3, не более

ГОСТ 6709-72

9. Массовая концентрация свинца (Рb), мг/дм3, не более

ГОСТ 6709-72

10. Массовая концентрация цинка (Zn), мг/дм3, не более

ГОСТ 6709-72

11. Массовая концентрация веществ, восстанавливающих КМnО4, мг/дм3, не более

ГОСТ 6709-72

12. рН воды

ГОСТ 6709-72

13. Удельная электрическая проводимость при 20 °С, См/м, не более

ГОСТ 6709-72

14. Гидрокарбонаты, мг/дм3, не более

РД 52.24.493-2006

15. Щёлочность, мг-экв/дм3

РД 52.24.493-2006

16. Жёсткость общая, град.Ж, не более

ГОСТ Р 52407-2005

17. Натрий, мг/дм3, не более

ГОСТ Р 51309-99

18.Магний, мг/дм3, не более

ГОСТ Р 51309-99

Вследствие крайне низкого солесодержания вода «Кристальная-деминерализованная» не пригодна для употребления в питьевых целях. Она предназначена прежде всего для нормальной и экономичной работы систем и установок, связанных с нагревом и испарением воды и использующих особо чистую воду.

Наибольшее применение деминерализованная вода находит в различных технических, медицинских и других установках, а также в хозяйственно-бытовых целях. Деминерализованная (обессоленная) вода рекомендуется для офисных и домашних увлажнителей воздуха, парогенераторов и утюгов, пароконвекторов, пароварок, кофемашин и прочих установок и устройств. Она используется для разбавления теплоносителей в системах отопления, при приготовлении незамерзающих, охлаждающих и других жидкостей,для заливки в аккумуляторы и пр.

Вследствие высокой растворяющей способности эта вода применяется при чистовой мойке стекол и стеклопакетов, зеркал, ювелирных и иных изделий, подготовки металлических и других поверхностей при порошковом окрашивании. Деминерализованная вода используется в парфюмерии и медицине при приготовлении различных гелей и растворов, во многих установках для смазывания и охлаждения трущихся деталей и частей (в частности, стоматологических),при паровой стерилизации инструментов в автоклавах, в приборах ультразвуковой терапии (например, ингаляторах.

В ряде производств деминерализованная вода используется для охлаждения и отмывки изделий (производства литьевых изделий - дроби, гальванические производства, цеха нанесения покрытий),для заполнения охлаждающих и промывных контуров обессоленной водой и поддержания заданного качества циркулируемой воды с помощью подпитки (т.е.добавления) новых порций деминерализованной воды.

Деминерализованная вода применяется при восстановлении струйных картриджей, когда возникают неприятные случаи сгорания контактных групп и печатающего элемента. Одной их главных причин при этом является использования водопроводной или недостаточно очищенной воды для промывки внутренностей струйного картриджа и печатающей головки.

Вода с солями, является хорошим проводником, что не очень хорошо для контактных групп струйного картриджа. С другой стороны,как отмечают специалисты, примеси металлов содержащиеся в обычной воде вступают в реакцию с танталовыми спиралями печатающей головки, тем самым возрастает вероятность выхода из строя самого печатающего элемента в целом. При изготовлении стеклопакетов, если стёкла перед упаковкой отмывать обычной водой, на стекле после высыхания воды остаются разводы соли,которые после упаковки в пакет никак не убрать. Поэтому необходимо отмывать стекло с помощью горячей деминерализованной воды. Обессоленная вода не оставляет соли после высыхания на стекле. Соответственно, в результате в пакете стеклопакет будет прозрачным и без солевых потёков.

Конкретный минерально- солевой состав любой воды (натуральной, в т.ч. артезианской и родниковой, очищенной, водопроводной, кондиционированной различными искусственными добавками,например, йодом и фтором и т.д.) в известной степени определяет вкус и послевкусие приготовленных на этих видах воды пищи и напитков. В то же время содержание солей и других примесей, определяющих вкус и другие потребительские свойства природной и водопроводной воды, непрерывно изменяется в пространстве и времени. Это обстоятельство затрудняет управление качеством и сравнительную оценку производимой из этой воды пищи и напитков.Необходимость поддержания стабильного состава и вкуса многих напитков (и не только дорогого алкоголя или дешёвого пива!) вынуждает их производителей максимально снижать минерализацию исходной питьевой воды.

Именно поэтому обессоленная деминерализованная вода, обладающая к тому же высокой экстрагирующей способностью, может использоваться в кулинарии при приготовлении высококачественных и диетических блюд, для заваривания элитных сортов чая и кофе, приготовления настоев и отваров целебных трав с целью подчёркивания и сохранения их индивидуального природного аромата и полезных свойств.

При кипячении жесткой воды на ее поверхности образуется пленка, а сама вода приобретает характерный привкус. При заваривании чая или кофе в такой воде может выпадать бурый осадок. К тому же диетологами установлено, что в жесткой воде хуже разваривается мясо. Связано это с тем, что соли жесткости вступают в реакцию с животными белками, образуя нерастворимые соединения. Это приводит к снижению усвояемости белков. Замечено, что пища, приготовленная на деминерализованной воде выглядит аппетитнее, не теряет своей привлекательной формы, отличается более насыщенным и богатым вкусом. При приготовлении напитков и блюд из концентратов требуется меньшее (до 20%) количество сухого концентрата для получения готового продукта.

Деминерализованная вода, обладая повышенной проницаемостью, отлично удаляет грязевые, жировые пятна на тканях, посуде, ваннах, раковинах, позволяет экономить значительный объем моющих, чистящих средств (до 90%), время стирки и уборки квартиры снижается (до 15%), срок жизни белья увеличивается (на 15%).

Отложение накипи является причиной до 90% аварий водонагревателей. Накипь откладываясь на стенках водонагревательных устройств (бойлеров, колонок и т.п.), а также на стенках труб линии горячего водоснабжения, нарушает процесс теплообмена. Соответственно нагревательные элементы перегреваются, идет перерасход электроэнергии и газа.Исследования показали, что при использовании деминерализованной воды экономия на электрических водонагревателях или газовом оборудовании составляет 25-29%.

Вода, содержащая железо, при непродолжительном контакте с кислородом приобретает желтовато-бурую окраску, а при содержании железа выше 0,3 мг/л вызывает появление ржавых потеков на сантехнике и пятен на белье при стирке. При использовании деминерализованной воды сантехника остаётся чистой. Деминерализованная вода не зашлаковывает водопроводные коммуникации, противостоит коррозии и, растворяя солевой налет, вымывает его, продлевая жизнь сантехнике почти вдвое.

Условия хранения:

Хранить в затемнённом месте при температуре от +5 о С до +20 о С и относительной влажности воздуха не более 75%.

Срок годности : 18 месяцев с даты розлива.

Изготовитель : ООО «Питьевая вода», Екатеринбург.

Вода – это жизнь. Все мы с детства знаем, что наш организм практически целиком состоит из воды. Мы пьем много воды, чтобы быть здоровыми, и всегда стараемся пить только чистую, безопасную воду. Но почему же тогда вода глубокой очистки вредна для организма ? Что такое деминерализованная вода и зачем она нужна?

Вода глубокой очистки

Деминерализованная или деионизированая вода – это вода глубокой очистки, в которой понижено содержание солей. От дистиллированной ее отличает, то, что неэлектролиты в ней присутствуют.

На сегодняшний день существует множество способов получения деионизированной воды. Для разных нужд необходима вода более или менее глубокой очистки, поэтому разные методы применяются для разных целей.

Выпаривание

Суть метода заключается в том, что загрязнённая вода выпаривается. При этом примеси остаются , а чистая вода конденсируется. Этот метод очень энергетически затратен, но позволяет удалить и неэлектролитические примеси.

Электролиз

Способ отчистки воды под действием электрического поля. Поле действует на свободные ионы, растворенные в воде, и притягивает их, а вода становится чище.

Обратный осмос

Принцип очистки заключается в том, что воду под большим давлением пропускают через полупроницаемую мембрану , мельчайшие поры которой, пропускают молекулы воды, но задерживают примеси. Этот метод в сочетании с остальными позволяет получить бидистиллированную воду, которая считается самой чистой на сегодняшний день.

Области применения

В любой воде содержатся минеральные соли , мы даже часто покупаем специальную минеральную воду с повышенным содержанием некоторых солей.

Но мы также знаем, что жесткая вода или вода с повышенным содержанием солей калия и кальция, малопригодна для бытовых нужд. При стирке она образует осадок, который выводит из строя стиральные машины, а на чайнике появляется в виде накипи.

Но если для быта нам необходимо лишь слегка уменьшить содержание солей, то для фармакологической и пищевой промышленности. Такая вода необходима на нефтехимических предприятиях и производствах, занимающихся обработкой металлов.

Еще одна группа, использующая деминерализованную воду – автомобилисты . Они доливают воду глубокой отчистки в антифриз. В охлаждающей жидкости содержится вода, но при смене погоды она может испаряться. Так же такая вода необходима для работы омывателя стекол

Лишь обессоленная вода может являться диэлектриком, так как ионы солей в растворе способны проводить электричество. Это открывает еще одно поле использования: в научно-исследовательских целях. Деминерализованная вода нашла свое применения в области энергетики .

Последнее время деионизированная вода более популярна, чем дистиллированная. Устройства для дистилляции быстрее изнашиваются из-за наличия солей в жидкости, в то время как деминерализация менее затратна.

Вред от потребления обессоленной воды

Если деминерализованная вода полезна для приборов и машин, то влияние на человека не так однозначно. Вода глубокой отчистки способна вымывать из организма соли, порой это бывает необходимо. Например, доказано положительное влияние умеренного потребления обессоленной воды при:

  • обнаружении отложений в печени;
  • нарушении работы почек;
  • диабете;
  • аллергии;
  • интоксикации и отравлениях.

Помимо вредных примесей в воде присутствуют также и полезные, но вода глубокой очистки лишена любых примесей, как часто выражаются врачи: это «мертвая» вода .

Некоторые примеси необходимы для нормальной работы организма, но деионизированная вода не содержит этих примесей и не поддерживает реакции. К тому же такая вода невкусная, она абсолютно пресная и не устраняет чувство жажды.

Регулярное употребление воды глубокой отчистки в пищу может привести к разрушению слизистой оболочки желудочно-кишечного тракта. Это показывают эксперименты на крысах.

Однозначно доказано пагубное влияние на процесс обмена минеральными веществами при употреблении обессоленной воды. Эта вода вымывает минеральные вещества из биологических жидкостей. Что влияет на гормональный фон и производство красных кровяных телец. В то же время, увеличивается выделение воды из организма.

При частом употреблении слабо минеральной воды уменьшается концентрация кальция и магния в организме. Кальций является строительным веществом многих костей и тканей организма, а магний необходим для протекания более чем трехсот биологических процессов.

Также было доказано, что при регулярном потреблении деминерализованной воды возрастает поступление токсичных металлов . «Мертвая» вода обладает слабыми защитными свойствами.

В последнее десятилетие значительно развилась техника деминерализации воды с помощью ионообменных смол (иониты). Ионообменные смолы делятся на две группы: 1) катиониты, представляющие собой смолы с кислой, карбоксильной или сульфоновой группой, обладающие способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов; 2) аниониты - чаще всего продукты полимеризации аминов с формальдегидом, обменивающие свои гидроксильные группы на анионы.

Деминерализация воды проводится в специальных аппаратах-колонках, причем в принципе можно или пропускать воду вначале через колонку с катионитом, а затем с анионитом или в обратном порядке (так называемая конвенкционная система), или пропускать воду через одну колонку, содержащую одновременно и катионит, и анионит (смешанная колонка).

Приводим описание одной из отечественных промышленных обессоливающих установок производительностью 10 т/ч, работающей по схеме: механические фильтры - Н-катионирование - декарбонизация - ОН-анионирование (рис.79).

Вода из городского водопровода при помощи насосов / поступает в механический блок, состоящий из двух фильтров, загружаемых суль-фоуглем. Вода проходит фильтр сверху вниз и поступает на Н-катио-нирование 2. Эксплуатация механического фильтра предусматривает взрыхление (один раз в 3 дня), которое необходимо для предотвращения слеживания сульфоугля и вымывания грязи, образующейся за счет истирания сульфоугля. Взрыхление производят током воды снизу. Схемой предусмотрена также подача водопроводной воды на катиони-рование, минуя механические фильтры. Н-катионитовый блок состоит из трех фильтров и декарбонизатора 3, установленного после них. Ка-тионитовые фильтры загружаются смолой КУ-1, получаемой конденсацией фенолсульфокислоты и формальдегида, которая способна при определенных условиях поглощать из водных растворов различные катионы. Катионит КУ-1, как и остальные катиониты, характеризуется неодинаковой способностью к поглощению различных катионов.

Для большинства катионитов распределение активности поглощения различных катионов и соответствующая им емкость поглощения могут быть представлены следующим рядом:

Процесс катионного обмена протекает по схеме:

где К - органический анион катионита.

В дальнейшем в связи с различной способностью к обмену отдельных катионов ион натрия, обладающий наименьшей величиной подвижности, первым начнет вытесняться в фильтрат более подвижными катионами кальция и магния. Уменьшение в катионите количества водородных ионов, способных к обмену, повлечет за собой уменьшение кислотности на эквивалентную величину и увеличение в фильтрате ионов натрия.

Н-катионитовый фильтр представляет собой цилиндрический аппарат, снабженный верхним и нижним днищами, присоединенными к корпусу при помощи болтов. Поверхность фильтров гуммирована. На дно фильтра загружается кварцевый песок высотой слоя 300 мм, затем катионит высотой слоя 3 м. Наряду с кварцевым песком фильтру придаются верхние и нижние дренажные устройства, которые предотвращают вынос катионитовой смолы при эксплуатации фильтра.

Дренажные устройства состоят из гуммированных дисков, в которых на резьбе укреплены щелевые колпачки. Помимо сказанного, дренажные устройства предназначены для равномерного распределения по всей площади поперечного сечения фильтра проходящей через него воды как при катионировании, так и при взрыхлении и отмывке. Эксплуатация фильтра заключается в периодическом осуществлении четырех операций: 1) Н-катионирования; 2) взрыхления; 3) регенерации; 4) отмывки. Взрыхление катионита производят для устранения уплотнения, удаления грязи, нанесенной водой и раствором кислоты, и мелочи, образующейся за счет истирания катионита. Взрыхление производится исходной водой.

Регенерация Н-катионитовых фильтров производится 5% раствором хлористоводородной кислоты, приготовляемой в специальной емкости-

реакторе 10 с мешалкой 12. На приготовление раствора используется исходная вода; концентрированная хлористоводородная кислота подается из мерника 9, куда с помощью сжатого воздуха попадает из бака-хранилища 8. Приготовленный для регенерации раствор кислоты сохраняется в сборнике 11. Кислота после регенерации сбрасывается через слой мраморной крошки в канализацию.

После пропуска через фильтр необходимого количества кислоты сразу же производят отмывку фильтра исходной водой. Н-катиониро-ванная вода после разложения карбонатной жесткости содержит большое количество свободной углекислоты, которая удаляется в декарбо-низаторе 3 за счет десорбции, вследствие создания над поверхностью воды с помощью вентилятора 4 низкого парциального давления С0 2 . Десорбция возрастает с увеличением температуры среды, так как при этом снижается растворимость газа в воде. Декарбонизованная вода собирается в баке 5, откуда насосом 6 подается в анионитовый блок

Анионитовые фильтры загружены смолой ЭДЭ-10п, полученной конденсацией полиэтиленполиамидов и эпихлоргидрина, способной поглощать при определенных условиях различные анионы из водных растворов. ЭДЭ-10п, как и остальные аниониты, характеризуется неодинаковой способностью к поглощению различных анионов. Аниониты делятся на две группы: слабоосновные и сильноосновные. Слабоосновные аниониты способны поглощать анионы сильных кислот (SO 4 -2 CI - , NO 3 -), а анионы слабых кислот (HCO 3 - , HSiO 3 - др.) не удерживают их. Сильноосновные аниониты извлекают из водных растворов анионы как сильных, так и слабых кислот. Процесс анионного обмена протекает по схеме:

где А - органический катион анионита.

Анионитовый блок состоит из трех фильтров диаметром 800 мм и высотой 3,5 м. Устроены анионитовые фильтры аналогично катионито-вым. Эксплуатация анионитового фильтра заключается в периодическом осуществлении тех же четырех операций: 1) анионирования; 2) взрыхления; 3) регенерации; 4) отмывки.

Взрыхление анионитовых фильтров производится декарбонизирован-ной водой 5. Регенерация ОН-анионитовых фильтров осуществляется 3-4% раствором щелочи. Для приготовления регенерационного раствора щелочи необходимое количество концентрированного раствора, получаемого из твердого NaOH на обессоленной воде в реакторе с мешалкой 13, подается через мерник 14 в баки 15, куда для разбавления подведена обессоленная вода. Регенерационный раствор из баков 15 подается затем сжатым воздухом на фильтр 16 и далее на ОН-аниони-товый фильтр. Отмывка предназначена для удаления из фильтра избытка регенерационного раствора и продуктов регенерации и проводится де-карбонизированной водой. Отмывочные воды сбрасываются. С помощью ионитов можно получать деминерализованную воду, по своим качествам соответствующую фармакопейным нормам. В ряде случаев полезно сочетать деминерализацию воды с ее дистилляцией (для инъекционных растворов).

Деминерализованную (обессоленную) воду получают из водопроводной питьевого качества, предварительно подвергнутой тщательному анализу, так как в ней содержится значительное количество растворенных и взвешенных веществ.

Деминерализация воды (освобождение от присутствия нежелательных катионов и анионов) проводится с помощью ионного обмена и методов разделения через мембрану.

Ионный обмен основан нa использовании ионитов - сетчатых полимеров разной степени сшивки, с гелевой или микропористой структурой, ковалентно связанных с ионогенными группами. Дис­социация этих групп в воде или растворах дает ионную пару - фиксированный на полимере ион и подвижный противоион, который обменивается на ионы одноименного заряда (катионы или анионы) из раствора. Отечественная промышленность выпускает ионообменные смолы:

Ионообменные катиониты (КУ-2, КУ-2-8ч, СК-3), которые способны обменивать свой ион водорода на катионы (Mg 2+ ; Ca 2+ и др.); В Н-форме (катионит с подвижным атомом водорода) они обмени­вают все катионы, содержащиеся в воде.

Ионообменные аниониты (АВ-17-8ч, АВ-17-10п), обменива­ющие свой гидроксил (ОН~) на анионы: SO4"; Сl и др. в ОН-форме (анионит с подвижной гидроксильной группой) обменивают все анионы, содержащиеся в воде.

Каждый килограмм смолы способен очистить до 1000 л воды и более. Качество воды контролируют по электропроводности. Как только ионит прекращает связывать ионы, электропроводность возрастает.

Катиониты - смолы с кислой группой (карбоксильной или сульфоновой). Для их регенерации (восстановления способности обменивать ион водорода) применяют 5%-ный раствор хлористо­водородной кислоты.

Аниониты - чаще всего продукты полимеризации аминов с формальдегидом. Для регенерации используют 5 %-ный раствор натрия гидрокарбоната или натрия гидрооксида.

Существует два типа колоночных ионообменных аппаратов: с раздельными и со смешанными слоями катионов и анионов. Ап­параты 1-го типа состоят из двух последовательно расположенных колонок, первая из которых заполняется катионитами, а вторая - анионитами. Аппараты 2-го типа состоят из одной колонки, за­полненной смесью этих ионообменных смол. Питьевую воду пода­ют в колонки снизу вверх, через слой катионита, затем на слой анионитов, фильтруют от частиц разрушенных ионообменных смол и нагревается в теплообменнике до 80 - 90 °С.

Ионообменные смолы могут быть гранулированными, в виде волокон, губчатых смол, жгутов (лент), последовательно переме­щающихся через сорбционную ванну, промывочную ванну, за­тем через бак регенерации и отмывки. Ионообменные волокна изнашиваются медленнее, чем гранулированные. Меньше подвер­жены разрушению магнитные гранулы.



Ионообменная технология обеспечивает классическое обессоливание воды и является экономной. Однако имеет ряд недостат­ков: 1) ионообменные смолы требуют периодической регенера­ции; 2) при длительном использовании могут стать субстратом для развития микроорганизмов, поэтому требуется периодиче­ская дезинфекция используемых смол.

Ионообменная установка состоит из 3-5 пар катионитовых и анионитовых колонок (рис.1). Водопроводная вода

Обессоленная вода

Рис. 1. Принцип работы ионообменной установки

Среди методов разделения через мембрану можно выделить: обратный осмос, ультрафильтрацию, диализ, электродиализ, испарение через мембрану. Эти методы основаны на использовании перегородок, обладающих селективной проницаемостью, благодаря чему возможно получение воды без фазовых и химических превращений.

Обратный осмос (гиперфильтрация) - переход растворителя (воды) из раствора через полупроницаемую мембрану под действием внешнего давления. Избыточное рабочее давление солевого раствора намного больше осмотического. Движущей силой обратного осмоса называют разность давлений по обе стороны мембраны. Для разделения применяют мембраны двух

1. Пористые -Селективная проницаемость основана на адсорбции молекул воды поверхностью мембраны и ее порами. УАМ 50 м, УАМ 100 м, УАМ 150 м - 125 А, УАМ 200 м УАМ 300 м и УАМ 500 м.

2. Непористые диффузионные мембраны образуют водород­ные связи с молекулами воды на поверхности контакта. Под дейст­вием избыточного давления эти связи разрываются, молекулы воды диффундируют в противоположную сторону мембраны, а на образовавшиеся места проникают следующие. Таким образом, вода как бы растворяется на поверхности и диффундирует внутрь слоя мембраны. Выпускаются гиперфильтрационные ацетатцеллюлозные мембраны МГА-80, МГА-90, МГА-95, МГА-100.



Установка обратного осмоса состоит из насоса высокого давле­ния, одного или нескольких пермиаторов и блока регулирования, поддерживающего оптимальный рабочий режим. Каждый из пер­миаторов содержит большое количество (до 1 млн) полых воло­кон (мембран). В качестве мембран используют эфиры целлюлозы (ацетаты), полиамиды и др.

Воду подают в пермиатор, омывая волокна с внешней сторо­ны. Под давлением выше осмотического она проникает внутрь полых трубок, т.е. уходит от солей, собирается внутри трубок, а «концентрат» солей выливается в сток.

По ходу движения воды в пермиатор устанавливают угольный фильтр для удаления хлора.

Методом обратного осмоса удаляются более 90 % солей, ВМВ, бактерии и даже некоторые вирусы.

Метод имеет много положительных свойств: простота; произ­водительность, не зависящая от солесодержания в исходной воде; широкий выбор полупроницаемых мембран; экономичность - из 10 л питьевой воды получается 7,5 л воды очищенной; затраты энергии в 10-16 раз меньше, чем при дистилляции. Данный принцип лежит в основе работы промышленных уста­новок «Роса», УГ-1 и УГ-10.

Для получения сверхчистой воды сочетают методы ионного обмена и обратного осмоса.

Улътрафильтрация - процесс мембранного разделения растворов высокомолекулярных соединений под действием разности давлений. Данный метод используют, когда осмотическое давление несоизмеримо мало в сравнении с рабочим давлением. Движущей силой является разность давлений - рабочего и атмосферного. Ультрафильтрация воды через мембрану с диаметром пор 0,01 мкм позволяет на 100% освободить питьевую воду от солей, органи­ческих и коллоидных веществ и микроорганизмов.

Электродиализ. Механизм разделения основан на направлен­ном движении ионов в сочетании с селективным действием мемб­ран под влиянием постоянного тока. В качестве ионообменных мембран применяются:

Катионитовые марки МК-40 с катионитом КУ-2 в Na-форме и основой на полиэтилене высокой плотности и МК-40л, армированная лавсаном;

Анионитовые марки МА-40 с анионитом ЭДЭ-10П в Сl-форме на основе полиэтилена высокой плотности и МА-41л - 1 мембрана с сильноосновным анионитом АВ-17, армированная лавсаном.

Воду помещают в ванну, разделенную на три части селективными ионообменными мембранами. Мембраны, имеющие отрицательный заряд (катиониты) проницаемы для катионов, имеющие положительный за­ряд (аниониты) - для анионов. Ионообменные мембраны не сор­бируют ионы, а селективно пропускают их.

Через ванну пропускают постоянный электрический ток, все ионы солей, находящихся в воде, начинают передвигаться к мемб­ранам, имеющим противоположный заряд: катионы - к катоду, анионы - к аноду. Ионы солей, удаленные из камеры обессоливания, концентрируются соответственно в соседних камерах. Ос­таточное солесодержание 5 - 20 мг/л.

Выпускаются электродиализные установки ЭДУ-100 и ЭДУ-1000 производительностью 100 и 1000 м 3 /сут.

Испарение через мембрану. Растворитель проходит через мембрану и в виде пара удаляется с ее поверхности в потоке инертного газа или под вакуумом. Для этой цели используют мембраны из целлофана, полиэтилена, ацетатцеллюлозы.

Преимущество мембранных методов, все больше внедряемых в производство, - значительная экономия энергии. Также сравни­тельно легко возможно регулировать качество воды. Недостатком методов считают опасность концентрационной поляризации мембран и пор, что может вызвать прохождение нежелательных ионов или молекул в фильтрат.

Деминерализованная вода используется для мойки стеклодрота, ампул, вспомогательных материалов и питания аквадистилляторов при получении воды очищенной (дистиллированной) и воды для инъекций.

Получение воды очищенной (дистиллированной )

Вода очищенная ФС 42-2619-89 (Aqua purificata), используемая в производстве инъекционных лекарственных форм, должна быть максимально химически очищена и отвечать соответствующей НТД. В каждой серии полученной воды обязательно проверяют значение рН (5,0-6,8), наличие восстанавливающих веществ, угольного ангидрида, нитратов, нитритов, хлоридов, сульфатов, кальция и тяжелых металлов. Допускается наличие аммиака - не более 0,00002%, сухого остатка - не более 0,001%. Для непрерывной оценки качества получаемой воды используется измерение удельной электропроводности. Однако метод недостаточно объективен, так как результат зависит от степени ионизации молекул воды и примесей.

Воду очищенную получают методом дистилляции, перегонки водопроводной или деминерализованной воды в дистилляционных аппаратах различных конструкций. Основными узлами любого дистилляционного аппарата являются испаритель, конденсатор и сборник. Сущность метода перегонки заключается в том, что исходную воду заливают в испаритель и нагревают до кипения. Происходит фазовое превращение жидкости в пар, при этом водяные пары направляются в конденсатор, где конденсируются и в виде дистиллята поступают в приемник. Такой метод требует затрат большого количества энергий, поэтому в настоящее время на некоторых заводах получают воду, очищенную методами разделения через мембрану.

Получение воды для инъекций в промышленных условиях

Согласно требованиям ФС 42-2620-89 вода для инъекций (Aqua pro ingectionibus) должна удовлетворять всем требованиям, предъявляемым к воде очищенной, а также должна быть стерильной и апирогенной. Стерильность воды определяется методами, изложенными в статье «Испытания на стерильность» ГФ XI издания, с. 187-192. Испытание пирогенности воды проводят биологическим методом, приведенным в статье «Испытание на пирогенность» ГФ XI издания, с. 183-185.

Оборудование для получения воды очищенной и воды для инъекций

В промышленных условиях получение воды для инъекций и воды очищенной осуществляют с помощью высокопроизводи­тельных корпусных аппаратов, термокомпрессионных дистилля­торов различных конструкций и установок обратного осмоса.

К колонным многокамерным аппаратам относятся прежде всего многоступенчатые аппараты. Установки подобного типа для получения очищенной воды бывают различной конструкции. Производительность крупных моделей достигает 10 т/ч.

Чаще всего применяются трехступенчатые колонные аппараты с тремя корпусами (испарителями), расположенными вертикально или горизонтально. Особенность колонных аппаратов в том, что только первый испаритель нагревается паром, вторичный пар из первого корпуса поступает во второй в качестве греющего, где конденсируется и получается дистиллированная вода. Из второго корпуса вторичный пар поступает в третий - в качестве греющего, где также конденсируется. Таким образом, дистиллированную воду получают из 2-го и 3-го корпусов. Производительность такой установки до 10 т/ч дистиллята. Качество получаемого дистиллята хорошее, так как в корпусах достаточная высота парового пространства и предусмотрено удаление капельной фазы из пара с помощью сепараторов.

Для обеспечения апирогенности получаемой воды необходимо создать условия, препятствующие попаданию пирогенных веществ в дистиллят. Эти вещества нелетучи и не перегоняются с водяным паром. Загрязнение ими дистиллята происходит путем переброса капелек воды или уноса их струей пара в холодильник. Поэтому конструктивным решением вопроса повышения качества дистил­лята является применение дистилляционных аппаратов соответ­ствующих конструкций, в которых исключена возможность пере­броса капельно-жидкой фазы через конденсатор в сборник. Это до­стигается устройством специальных ловушек и отражателей, высо­ким расположением паропроводов по отношению к поверхности парообразования. Целесообразно также регулировать обогрев испа­рителя, обеспечивая равномерное кипение и оптимальную скорость парообразования, так как чрезмерный нагрев ведет к бурному ки­пению и перебросу капельной фазы. Проведение водоподготовки путем обессоливания также уменьшает пенообразование и, следо­вательно, выделение капелек воды в паровую фазу.

На некоторых химико-фармацевтических предприятиях воду для инъекций получают с помощью дистиллятора «Mascarini» -произво­дительность этого аппарата 1500 л/ч. Он снабжен прибором контро­ля чистоты воды, бактерицидными лампами, воздушными фильтра­ми, прибором для удаления пирогенных веществ, а также установкой двойной дистилляции воды производительностью 3000 л/ч.

Трехкорпусной аквадистиллятор «Финн-аква» (Финляндия) функционирует за счет использования деминерализованной воды(рис. 2).

Рис. 2. Аквадистиллятор «Финн-аква»:

1 - регулятор давления; 2 - конденсатор-холодильник; 3 - теплообменник

камер предварительного нагрева; 4 - парозапорное устройство; 5 - зона

испарения; 6,7,8 - труба; 9 – теплообменник

Вода поступает через регулятор давления в конденсатор, проходит теплообменники камер предварительного нагрева, а после нагревания поступает в зону испарения, состоящую из системы трубок, обогреваемых внутри греющим паром. Нагретая вода подается на наружную поверхность обогреваемых трубок в виде пленки, стекает по ним и нагревается до кипения.

В испарителе за счет поверхности кипящих пленок создается интенсивный поток пара, движущийся снизу вверх со скоростью 20- 60 м/с. Центробежная сила, возникающая при этом, обеспечивает стекание капель в нижнюю часть корпуса, прижимая их к стенкам. Наиболее совершенными в настоящее время считаются термо­компрессионные дистилляторы (рис. 3).

Их преимущество перед дистилляторами других типов заключается в том, что для получения 1 л воды для инъ­екций необходимо израсходовать 1,1 л холодной водопроводной воды. В других аппаратах это соотношение составляет 1:9- 1:15. Принцип работы аппарата заключается в том, что образую­щийся в нем пар, перед тем как поступить в конденсатор, прохо­дит через компрессор и сжимает­ся. При охлаждении и конденса­ции он выделяет тепло, по вели­чине, соответствующей скрытой теплоте парообразования, которая. затрачивается на нагревание ох­лаждающей воды в верхней части трубчатого конденсатора. Питание аппарата водой осуществляется в направлении снизу вверх, выход дистиллятора - сверху вниз. Про­изводительность дистиллятора до 2,5 т/ч. Качество получаемой апирогенной воды высокое, так как капельная фаза испаряется на стенках трубок испарителя. Нагревание и кипение в трубках происходит равномерно, без перебросов, в тонком слое. Задерживанию капель из пара способст­вует также высота парового пространства. Недостатки аппарата - сложность устройства и эксплуатации.

Рис. 3. Принцип работы термокомпрессионного дистиллятора: 1 - конденсатор-холодильник; 2 - паровое пространство; 3 - компрессор; 4 - регу­лятор давления; 5 - камера предвари­тельного нагрева; 6* - трубки испарителя

Наиболее широко распространенным до последних лет мето­дом получения воды для инъекций была дистилляция. Такой метод требует затрат большого количества энергии, что является серьезным недостатком. Среди других недостатков следует отме­тить громоздкость оборудования и большую занимаемую им пло­щадь; возможность присутствия в воде пирогенных веществ; сложность обслуживания.

Этих недостатков лишены новые методы мембранного разде­ления, все больше внедряемые в производство. Они протекают без фазовых превращений и требуют для своей реализации значительно меньших затрат энергии, сопоставимых с минимальной теоретически определяемой энергией разделения.

Мембранные методы очистки основаны на свойствах перегородки (мембраны), обладающей селективной проницаемостью, благодаря чему возможно разделение без химических и фазовых превращений. Для получения воды для инъекций в практическом отноше­нии представляют интерес следующие аппараты.

С использованием принципа мембранной очистки работает установка высокоочищенной воды «Шарья-500». Производитель­ность ее по питающей воде 500 л/ч, получаемая после этой установки высокоочищенная вода, свободная от механических примесей, органических и неорганических веществ. Она применяется в производстве иммунобиологических бактерийных препаратов и для приготовления инъекционных растворов.

Установка (УВВ) включает блоки предфильтрации, обратного осмоса и финишной очистки.

Блок фильтрации предназначен для очистки питьевой водопроводной воды от механических примесей размером 5 мкм и включает фильтр катионитный и два фильтра угольных, работающих параллельно или взаимозаменяемо.

Блок обратного осмоса работает при давлении не ниже 15 атм. Поступающая на блок вода разделяется после фильтрования на два потока, один из которых проходит сквозь обратноосмотические мембраны, а второй поток, проходящий вдоль поверхности мембра­ны и содержащий повышенное количество солей (концентрат) отводится из установки. Для обеспечения работы данного блока необходимо, чтобы соотношение объемов воды на подаче, сливе и проходящей через мембрану составляло 3:2:1 соответственно. Таким образом, для получения 1л высокоочищенной воды необходимо израсходовать приблизительно 3 л воды водопроводной. При этом скорость слива достаточно высока, что устраняет вредное влияние концентрированной поляризации на работу установки.

В блоке обратноосмотическом осуществляется очистка воды от растворимых солей, органических примесей, твердых взвесей и бактерий.

После блока обратного осмоса вода поступает на блок финишной очистки, включающей ионообмен и ультрафильтрацию. Ионообменная очистка воды осуществляется с помощью последо­вательно соединенных фильтров - катионного и анионного, за которыми установлен смешанный катионно-анионный фильтр, где происходит очистка от оставшихся катионов и анионов.

Окончательная доочистка воды проводится в двух ультра­фильтрационных аппаратах с полыми волокнами АР-2,0, предназ­наченных для отделения органических микропримесей (коллоид­ных частиц и макромолекул).Для производства иммунных и бактерийных препаратов не всегда пригодна вода для инъекций, полученная дистилляцией. Поэтому часто возникает необходимость в доочистке воды, которая может быть проведена с помощью установки «Супер-Кью». Производительность - 720 л/ч, вода пропускается через угольный фильтр, где происходит освобождение от органических веществ; затем - через смешанный слой ионитов; после чего поступает на патронный бактериальный фильтр с размером пор 0,22 нм (0,00022 мкм). Далее вода поступает на обратноосмотический модуль, где происходит удаление пирогенных веществ. Полученную воду используют для приготовления инъекционных лекарствен­ных форм, а концентрат используют как техническую воду или повторно отправляют на очистку.

Мембранные методы получения высокоочищенной воды для инъекций широко используются в мировой практике и признаны экономически целесообразными и перспективными.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то