Индивидуальный проект на тему: “Графическое решение уравнений и неравенств”. «Преимущества графического способа решения уравнений и неравенств» Графический метод решения уравнений и неравенств

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

    Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      На координатной плоскости постройте график линейного уравнения. Для этого преобразуйте неравенство в уравнение и постройте график, как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

      Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

учащийся 10 класса Котовчихин Юрий

Уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №5

Исследовательская работа на тему:

« Алгебраическое и графическое решение уравнений и неравенств, содержащих модуль »

Работу выполнил:

учащийся 10 класса

Котовчихин Юрий

Руководитель:

Преподаватель математики

Шанта Н.П.

Урюпинск

1.Введение………………………………………………………….3

2.Понятия и определения………………………………………….5

3.Доказательство теорем…………………………………………..6

4.Способы решение уравнений, содержащих модуль…………...7

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины.

………………………………………………………………………15

4.4.Решение нестандартных уравнения, содержащие модуль….16

5.Заключение……………………………………………………….17

6.Список использованной литературы……………………………18

Цель работы: уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

1. Введение:

Слово "модуль" произошло от латинского слова "modulus", что в переводе означает "мера". Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре -это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике -это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и.т.п.

Модуль объемного сжатия (в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Модуль – абсолютное значение – действительного числа А обозначается |A|.

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем -это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

3.Доказательство теорем

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

Доказательство

1. Если число a положительно, то -a отрицательно, т. е. -a

Например, число 5 положительно, тогда -5 - отрицательно и -5

В этом случае |a| = a, т. е. |a| совпадает с большим из двух чисел a и - a.

2. Если a отрицательно, тогда -a положительно и a

Следствие. Из теоремы следует, что |-a| = |a|.

В самом деле, как, так и равны большему из чисел -a и a, а значит равны между собой.

Теорема 2. Абсолютная величина любого действительного числа a равна арифметическому квадратному корню из А 2 .

В самом деле, если то, по определению модуля числа, будем иметь lАl>0 С другой стороны, при А>0 значит |a| = √A 2

Если a 2

Эта теорема дает возможность при решении некоторых задач заменять |a| на

Геометрически |a| означает расстояние на координатной прямой от точки, изображающей число a, до начала отсчета.

Если то на координатной прямой существует две точки a и -a, равноудаленной от нуля, модули которых равны.

Если a = 0, то на координатной прямой |a| изображается точкой 0

4.Способы решения уравнений, содержащих модуль.

Для решения уравнений, содержащих знак абсолютной величины, мы будем основывается на определении модуля числа и свойствах абсолютной величины числа. Мы решим несколько примеров разными способами и посмотрим, какой из способов окажется проще для решения уравнений, содержащих модуль.

Пример 1. Решим аналитически и графически уравнение |x + 2| = 1.

Решение

Аналитическое решение

1-й способ

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем неотрицательно, т. е. x + 2 ≥0 , тогда оно "выйдет" из под знака модуля со знаком "плюс" и уравнение примет вид: x + 2 = 1. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x + 2=-1

Таким образом, получаем, либо x + 2 = 1, либо x + 2 = -1. Решая полученные уравнения, находим: Х+2=1 или Х+2+-1

Х=-1 Х=3

Ответ: -3;-1.

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо -а.

Графическое решение

Одним из способов решения уравнений, содержащих модуль является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут является корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль- это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней(удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

2-й способ

Установим, при каких значениях x, модуль равен нулю: |Х+2|=0 , Х=2

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) Х+2 0

Х-2=1 Х+2=1

Решим каждую систему:

X=-3 X=-1

Ответ: -3;-1.

Графическое решение

y= |X+2|, y= 1.

Графическое решение

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции, построим график функции - это функция, пересекающая ось OX и ось OY в точках.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=1 пересеклась с графиком функции y=|x + 2| в точках с координатами (-3; 1) и (-1; 1), следовательно решениями уравнения будут абсциссы точек:

x=-3, x=-1

Ответ: -3;-1

Пример 2. Решить аналитически и графически уравнение 1 + |x| = 0.5.

Решение:

Аналитическое решение

Преобразуем уравнение: 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.

Ответ: решений нет.

Графическое решение

Преобразуем уравнение: : 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Графиком функции являются лучи - биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит уравнение не имеет решений.

Ответ: нет решений.

Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.

Решение:

Аналитическое решение

1-й способ

Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.

Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.

Поскольку в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых

значений модуля

Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:

(1) -X+2≥0 и (2) -X+2

X+2=2X+1; X-2=2X+1

Решим каждую систему:

(1) входит в промежуток и является корнем уравнения.

X≤2

X=⅓

(2) X>2

X=-3

X = -3 не входит в промежуток и не является корнем уравнения.

Ответ: ⅓.

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.

Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:

|a|=|b| a=b или a=-b

A2=b2 a=b или a=-b

Отсюда в свою очередь получим, что

|a|=|b| a 2 =b 2

Пример 4. Решим уравнение |x + 1|=|2x - 5| двумя различными способами.

1.Учитывая соотношение (1), получим:

X + 1=2x - 5 или x + 1=-2x + 5

x - 2x=-5 - 1 x + 2x=5 - 1

X=-6|(:1) 3x=4

X=6 x=11/3

Корень первого уравнения x=6, корень второго уравнения x=11/3

Таким образом корни исходного уравнения x 1 =6, x 2 =11/3

2. В силу соотношения (2), получим

(x + 1)2=(2x - 5)2, или x2 + 2x + 1=4x2 - 20x + 25

X2 - 4x2 +2x+1 + 20x - 25=0

3x2 + 22x - 24=0|(:-1)

3x2 - 22x + 24=0

D/4=121-3 24=121 - 72=49>0 ==>уравнение имеет 2 различных корня.

x 1 =(11 - 7)/3=11/3

x 2 =(11 + 7)/3=6

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x 1 =6, x 2 =11/3

Пример 5. Решим уравнение (2x + 3) 2 =(x - 1) 2 .

Учитывая соотношение (2), получим, что |2x + 3|=|x - 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х - 1 или 2х + 3=-х + 1

2х - х=-1 - 3 2х+ х=1 - 3

Х=-4 х=-0,(6)

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Ответ: х1=-4, х 2 =0,(6)

Пример 6. Решим уравнение |x - 6|=|x2 - 5x + 9|

Пользуясь соотношением, получим:

х - 6=х2 - 5х + 9 или х - 6 = -(х2 - 5х + 9)

Х2 + 5х + х - 6 - 9=0 |(-1) x - 6=-x2 + 5x - 9

x2 - 6x + 15=0 x2 - 4x + 3=0

D=36 - 4 15=36 - 60= -24 D=16 - 4 3=4 >0==>2 р.к.

==> корней нет.

X 1 =(4- 2) /2=1

X 2 =(4 + 2) /2=3

Проверка: |1 - 6|=|12 - 5 1 + 9| |3 - 6|=|32 - 5 3 + 9|

5 = 5(И) 3 = |9 - 15 + 9|

3 = 3(И)

Ответ: x 1 =1; x 2 =3

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин -это расстояние между ними. Например, геометрический смысл выражения |x - a | -длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x - 1| + |x - 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок .

Ответ:

Пример8. Решим уравнение |x - 1| - |x - 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет является не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Ответ: }

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то