Суммирование вероятностей. Сложение вероятностей. Формула полной вероятности

  • Теорема. Вероятность суммы несовместных событий иравна сумме вероятностей этих событий:

  • Следствие 1. С помощью метода математической индукции формулу (3.10) можно обобщить на любое число попарно несовместных событий:

  • Следствие 2. Поскольку противоположные события являются несовместными, а их сумма – достоверным событием, то, используя (3.10), имеем:

  • Часто при решении задач формулу (3.12) используют в виде:

    (3.13)

    Пример 3.29. В опыте с бросанием игральной кости найти вероятности выпадения на верхней грани числа очков более 3 и менее 6.

    Обозначим события, связанные с выпадением на верхней грани игральной кости одного очка, через U 1 , двух очков через U 2 ,…, шести очков через U 6 .

    Пусть событие U – выпадение на верхней грани кости числа очков более 3 и менее 6. Это событие произойдет, если произойдет хотя бы одно из событий U 4 или U 5 , следовательно, его можно представить в виде суммы этих событий: . Т. к. событияU 4 и U 5 являются несовместными, то для нахождения вероятности их суммы используем формулу (3.11). Учитывая, что вероятности событий U 1 , U 2 ,…,U 6 равны , получим:

  • Замечание. Ранее задачи такого типа решали с помощью подсчета числа благоприятствующих исходов. Действительно, событию U благоприятствуют два исхода, а всего шесть элементарных исходов, следовательно, используя классический подход к понятию вероятности, получим:

    Однако классический поход к понятию вероятности, в отличие от теоремы о вероятности суммы несовместных событий, применим только для равновозможных исходов.

    Пример 3.30. Вероятность попадания в цель стрелком равна 0,7. Какова вероятность того, что стрелок не попадет в цель?

    Пусть событие − попадание стрелком в цель, тогда событие, состоящее в том, что стрелок не попадет в цель, является противоположным событиемсобытию, т. к. в результате каждого испытания всегда происходит одно и только одно из этих событий. Используя формулу (3.13), получим:

  • 3.2.10. Вероятность произведения событий

  • Определение. Событие называетсязависимым от события если вероятность события зависит от того, произошло событиеили нет.

    Определение. Вероятность события вычисленная при условии, что событиепроизошло, называетсяусловной вероятностью события и обозначается

    Теорема. Вероятность произведения событий иравна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

  • Условие независимости события от события можно записать в виде Из этого утверждения следует, что для независимых событий выполняется соотношение:

  • т. е. вероятность произведения независимых событий и, равна произведению их вероятностей.

    Замечание. Вероятность произведения нескольких событий равна произведению вероятностей этих событий, причем вероятность каждого следующего по порядку события вычисляется при условии, что все предыдущие имели место:

  • Если события независимые, то имеем:

  • Пример 3.31. В ящике 5 белых и 3 черных шара. Из него наугад последовательно без возвращения вытаскивают два шара. Найти вероятность того, что оба шара белые.

    Пусть событие − появление белого шара при первом вынимании,− появление белого шара при втором вынимании. Учитывая, что,(вероятность появления второго белого шара при условии, что первый вынутый шар был белым и его не возвратили в ящик). Так как событияизависимые, то вероятность их произведения найдем по формуле (3.15):

  • Пример 3.32. Вероятность попадания в цель первым стрелком 0,8; вторым – 0,7. Каждый стрелок выстрелил по мишени. Какова вероятность того, что хотя бы один стрелок попадет в цель? Какова вероятность того, что один стрелок попадет в цель?

    Пусть событие – попадание в цель первым стрелком,– вторым. Все возможные варианты можно представить в видетаблицы 3.5 , где «+» обозначает, что событие произошло, а «−» − не произошло.

    Таблица 3.5

  • Пусть событие – попадание хотя бы одним стрелком в цель, Тогда событиеявляется суммой независимых событийиследовательно, применить теорему о вероятности суммы несовместных событий в данной ситуации нельзя.

    Рассмотрим событие противоположное событиюкоторое произойдет тогда, когда ни один стрелок не попадет в цель, т. е. является произведением независимых событийИспользуя формулы (3.13) и (3.15), получим:

  • Пусть событие – попадание одним стрелком в цель. Это событие можно представить следующим образом:

    События и– независимые, событияитакже являются независимыми. События, являющиеся произведениями событийи– несовместными. Используя формулы (3.10) и (3.15) получим:

  • Свойства операций сложения и умножения событий:

  • 3.2.11. Формула полной вероятности. Формула Байеса

  • Пусть событие может произойти только вместе с одним из попарно несовместных событий (гипотез),,…,, образующих полную группу, т. е.

    Вероятность события находится по формулеполной вероятности:

  • Если событие уже произошло, то вероятности гипотез могут быть переоценены по формулеБайеса :

    (3.17)

    Пример 3.33. Имеются две одинаковых урны с шарами. В первой урне 5 белых и 10 черных шаров, во второй − 3 белых и 7 черных шаров. Выбирают наугад одну урну и вытаскивают из нее один шар.

      Найти вероятность того, что этот шар белый.

      Из наугад выбранной урны вытащили белый шар. Найти вероятность того, что шар вытащили из первой урны.

    Мы уже знаем, что вероятность – это численная мера возможности наступления случайного события, т.е. события, которое может произойти, а может и не произойти при осуществлении определенной совокупности условий. При изменении совокупности условий вероятность случайного события может измениться. В качестве дополнительного условия мы можем рассмотреть наступление другого события. Итак, если к комплексу условий, при котором происходит случайное событие А , добавить еще одно, состоящее в наступлении случайного события В , то вероятность наступления события А будет называться условной.

    Условная вероятность события А - вероятность появления события А при ус­ловии, что произошло событие В. Условная вероятностьобозначается (A ).

    Пример 16. В ящике имеются 7 белых и 5 черных шаров, отличаю­щихся лишь цветом. Опыт состоит в том, что случайным образом вынимают один шар и, не опуская его обратно, вынимают еще один шар. Какова вероятность, что, второй вынутый шар – черный, если при первом извлечении достали белый шар?

    Решение.

    Перед нами два случайных события: событие А – первый вынутый шар оказался белым, В – второй вынутый шар - черный. А и В несовместные события, воспользуемся классическим определением вероятности. Число элементарных исходов при извлечении первого шара – 12, а число благоприятных исходов достать белый шар – 7. Следовательно, вероятность P(А) = 7/12.

    Если первый шар оказался белым, то условная вероятность события В - появления второго черного шара (при условии, что первый шар был белым) - равна (В) = 5/11, так как перед выни­манием второго шара осталось 11 шаров, из которых 5 черных.

    Отметим, что вероятность появления черного шара при втором извлечении не зависела бы от цвета вынутого первого шара, если, вы­нув первый шар, мы положили бы его обратно в ящик.

    Рассмотрим два случайных события А и В. Пусть вероятности P(А) и (В) известны. Определим, чему равна вероятность появления и события А, и события В, т.е. произведения этих событий.

    Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при том условии, что первое событие произошло:

    Р(А× В) = Р(А)× (В) .

    Так как для вычисления вероятности произведения не играет роли какое из рассмотренных событий А и В было первым, а какое вторым, то можно записать:

    Р(А× В) = Р(А) × (В) = Р(В) × (А).

    Теорему можно распространить на произведение п событий:

    Р(А 1 А 2 . А п) = Р(А х) Р(А 2 /А 1) .. Р(А п /А 1 А 2 ... А п-1).

    Пример 17. Для условий предыдущего примера вычислить вероятность извлечения двух шаров: а) белого шара первым, а черного вторым; б) двух черных шаров.

    Решение.

    а)Из предыдущего примера мы знаем вероятности достать из ящика белый шар первым и черный шар вторым, при условии, что первым извлекли белый шар. Для подсчета вероятности появления обоих событий вместе воспользуемся теоремой умножения вероятностей: Р(А× В) = Р(А) × (В)= .

    б) Аналогично рассчитаем вероятность вынуть два черных шара. Вероятность достать первым черный шар . Вероятность достать черный шар во второй раз при условии, что первый вынутый черный шар мы не опускаем обратно в ящик (черных шаров осталось 4, а всего шаров стало 11). Результирующую вероятность можно подсчитать по формуле Р(А×В)= Р(А) × (В) 0,152.

    Теорема умножения вероятностей имеет более простой вид, если события А и В независимые.

    Событие В называют независимым от события А, если вероят­ность события В не изменяется от того, произошло событие А или нет. Если событие В является независимым от события А, то его условная (В) равна обычной вероятности P(В):

    Оказывается, что если событие В будет независимым от события А , то и событие А будет независимым от В , т.е. (А)= P(А).

    Докажем это. Подставим равенство из определения независимости события В от события А в теорему умножения вероятностей: Р(А×В) = Р(А)× (В)= Р(А)× (В). Но с другой стороны Р(А× В) = Р(В) × (А). Значит Р(А) × (В)= Р(В) × (А) и (А)= P(А).

    Таким образом, свойство независимость (или зависимость) событий всегда взаимно и можно дать следующее определение: два события называются независимыми , если появление одного из них не изменяет вероятность появления другого.

    Следует отметить, что в основе независимости событий лежит независимость физической природы их происхождения. Это означает, что наборы случайных факторов, приводящих к тому или иному исходу испытания одного и другого случайного события, различны. Так, например, поражение цели одним стрелком никак не влияет (если, конечно, не придумывать никаких экзотических причин) на вероятность попадания в цель вторым стрелком. На практике независимые события встречаются очень часто, так как причинная связь явлений во многих случаях отсутствует или несущест­венна.

    Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению вероятности этих событий: Р(А×В) = Р(А) × P(В).

    Из теоремы умножения вероятностей для независимых событий вытекает следующее следствие.

    Если события А и В несовместные и P(A)¹0, P(В)¹0, то они зависимы.

    Докажем это способом от противного. Предположим, что несовместные события А и В независимы. Тогда Р(А×В) = Р(А) ×P(В). И так как P(A)¹0, P(В)¹0 , т.е. события А и В не являются невозможными, то Р(А×В)¹0. Но, с другой стороны, событие А ž В является невозможным как произведение несовместных событий (это рассматривалось выше). Значит Р(А×В)=0. получили противоречие. Таким образом, наше исходное предположение неверно. События А и В – зависимые.

    Пример 18 . Вернемся теперь к нерешенной задаче о двух стрелках, стреляющих по одной цели. Напомним, что при ве­роятности попадания в цель первым стрелком – 0,8, а вторым 0,7 необходимо найти вероятность поражения цели.

    События А и В – попадание в цель соответственно первым и вторым стрелком – совместные, поэтому для нахождения вероятности суммы событий А + В – поражение цели хотя бы одним стрелком – необходимо воспользоваться формулой: Р(А +В)=Р(А)+ Р(В) Р(А žВ). События А и В независимые, поэтому Р(А× В) = Р(А) × P(В).

    Итак, Р(А +В) = Р(А) + Р(В) - Р(А) × P(В).

    Р(А +В)= 0,8 + 0,7 – 0,8×0,7 = 0,94.

    Пример 19.

    Производится два независимых выстрела в одну и ту же мишень. Вероятность попадания при первом выстреле 0,6, а при втором - 0,8. Найти вероятность попадания в мишень при двух выстрелах.

    1) Обозначим попадание при первом выстреле как событие
    А 1 , при втором - как событие А 2 .

    Попадание в мишень предполагает хотя бы одно попада­ние: или только при первом выстреле, или только при втором, или и при первом, и при втором. Следовательно, в задаче требу­ется определить вероятность суммы двух совместных событий А 1 и А 2:

    Р(А 1 + А 2) = Р(А 1) + Р(А 2)-Р(А 1 А 2).

    2) Так как события независимы, то Р(А 1 А 2) = Р(А 1) Р(А 2).

    3) Получаем: Р(А 1 + А 2) = 0,6 + 0,8 - 0,6 0,8 = 0,92.
    Если события несовместны, то Р(А В) = 0 и Р(А + В) = = Р(А) + Р(В).

    Пример 20.

    В урне находятся 2 белых, 3 красных и 5 синих одинаковых по размеру шаров. Какова вероятность, что шар, случайным образом извлеченный из урны, будет цветным (не белым)?

    1) Пусть событие А - извлечение красного шара из урны,
    событие В - извлечение синего шара. Тогда событие (А + В)
    есть извлечение цветного шара из урны.

    2) Р(А) = 3/10, Р(В) = 5/10.

    3) События А и В несовместны, так как извлекается только
    один шар. Тогда: Р(А + В) = Р(А) + Р(В) = 0,3 + 0,5 = 0,8.

    Пример 21.

    В урне находятся 7 белых и 3 черных шара. Какова вероят­ность: 1) извлечения из урны белого шара (событие А); 2) из­влечения из урны белого шара после удаления из нее одного шара, который является белым (событие В); 3) извлечения из урны белого шара после удаления из нее одного шара, который является черным (событие С)?

    1) Р(А) = = 0,7 (см. классическую вероятность).

    2)Р В (А) = = 0,(6).

    3) Р С (А) = | = 0,(7).

    Пример 22.

    Механизм собирается из трех одинаковых деталей и счита­ется неработоспособным, если все три детали вышли из строя. В сборочном цехе осталось 15 деталей, из которых 5 нестандарт­ных (бракованных). Какова вероятность того, что собранный из взятых наугад оставшихся деталей механизм будет неработос­пособным?

    1) Обозначим искомое событие через А, выбор первой не­стандартной детали через А 1 , второй- через А 2 , третьей - через А 3

    2) Событие А произойдет, если произойдет и событие А 1 и событие А 2 , и событие А 3 т. е.

    А = А 1 А 2 А 3 ,

    так как логическое «и» соответствует произведению (см. раз­дел «Алгебра высказываний. Логические операции»).

    3) События А 1 , А 2 , А 3 зависимы, поэтому Р(А 1 А 2 А 3) =
    = Р(А 1) Р(А 2 /А 1) Р(А 3 /А 1 А 2).

    4)Р(А 1) = ,Р(А 2 /А 1) = ,Р(А 3 /А 1 А 2)= . Тогда

    Р(А 1 А 2 А 3) = 0,022.

    Для независимых событий: Р(А В) = Р(А) Р(В).

    Исходя из вышеуказанного, критерий независимости двух событий А и В:

    Р(А) = Р В (А) = Р (А), Р(В) = Р А (В) =Р (В).

    Пример 23.

    Вероятность поражения цели первым стрелком (событие А) равна 0,9, а вероятность поражения цели вторым стрелком (событие В) равна 0,8. Какова вероятность того, что цель будет поражена хотя бы одним стрелком?

    1) Пусть С - интересующее нас событие; противоположное событие - состоит в том, что оба стрелка промахнулись.

    3) Так как при стрельбе один стрелок не мешает другому, то события и независимы.

    Имеем: Р() = Р() Р() = =(1 - 0,9) (1 - 0,8) =

    0,1 0,2 = 0,02.

    4) Р(С) = 1 -Р() = 1 -0,02 = 0,98.

    Формула полной вероятности

    Пусть событие А может произойти в результате проявления одного и только одного события Н i (i = 1,2,... n) из некоторой полной группы несовместных событий H 1 , H 2,… H n . События этой группы обычно называют гипотезами.

    Формула полной вероятности. Вероятность события А рав­на сумме парных произведений вероятностей всех гипотез, об­разующих полную группу, на соответствующие условные ве­роятности данного события А:

    Р(А) = , где = 1.

    Пример 24.

    Имеется 3 одинаковые урны. В первой - 2 белых и 1 чер­ный шар, во второй - 3 белых и 1 черный шар, в третьей урне - 2 белых и 2 черных шара. Из выбранной наугад урны выбира­ется 1 шар. Какова вероятность того, что он окажется белым?

    Все урны считаются одинаковыми, следовательно, вероят­ность выбрать i-ю урну есть

    Р(H i) = 1/3, где i = 1, 2, 3.

    2) Вероятность вынуть белый шар из первой урны: (А) = .

    Вероятность вынуть белый шар из второй урны: (А) = .

    Вероятность вынуть белый шар из третьей урны: (А) = .

    3) Искомая вероятность:

    Р(А) = =0.63(8)

    Пример 25.

    В магазин для продажи поступает продукция трех фабрик, относительные доли которых: I - 50%, II - 30%, III - 20%. Для продукции фабрик брак соответственно составляет: I - 2%, П - 2%, III - 5%. Какова вероятность того, что изделие этой продукции, случайно приобретенное в магазине, окажется доб­рокачественным (событие А)?

    1) Здесь возможны следующие три гипотезы: H 1 , H 2, H 3 -
    приобретенная вещь выработана соответственно на I, II, III фабриках; система этих гипотез полная.

    Вероятности: P(H 1) = 0,5; Р(Н 2) = 0,3; Р(Н 3) = 0,2.

    2) Соответствующие условные вероятности события А рав­ны: (A) = 1-0,02 = 0,98; (A) = 1-0,03 = 0,97; (А) = = 1-0,05 = 0,95.

    3) По формуле полной вероятности имеем: Р(А) = 0,5 0,98 + + 0,3 0,97 + 0,2 0,95 = 0,971.

    Формула апостериорной вероятности (формула Бейеса)

    Рассмотрим ситуацию.

    Имеется полная группа несовместных гипотез H 1 , H 2, … H n , вероятности которых (i = 1, 2, ... п) известны до опыта (вероят­ности априори). Производится опыт (испытание), в результате которого зарегистрировано появление события А, причем изве­стно, что этому событию наши гипотезы приписывали опреде­ленные вероятности (i=1, 2, ...п). Каковы будут вероятности этих гипотез после опыта (вероятности апостериори)?

    Ответ на подобный вопрос дает формула апостериорной вероятности (формула Бейеса):

    , где i=1,2, ...п.

    Пример 26.

    Вероятность поражения самолета при одиночном выстреле для 1-го ракетного комплекса (событие А) равна 0,2, а для 2-го (событие В) - 0,1. Каждый из комплексов производит по одно­му выстрелу, причем зарегистрировано одно попадание в само­лет (событие С). Какова вероятность, что удачный выстрел при­надлежит первому ракетному комплексу?

    Решение.

    1) До опыта возможны четыре гипотезы:

    H 1 = А В - самолет поражен 1 -м комплексом и самолет поражен 2-м комплексом (произведение соответствует логичес­кому «и»),

    H 2 = А В - самолет поражен 1 -м комплексом и само­лет не поражен 2-м комплексом,

    H 3 = А В - самолет не поражен 1 -м комплексом и са­молет поражен 2-м комплексом,

    H 4 = А В - самолет не поражен 1 -м комплексом и са­молет не поражен 2-м комплексом.

    Эти гипотезы образуют полную группу событий.

    2) Соответствующие вероятности (при независимом действии комплексов):

    Р(H 1) = 0,2 0,1 = 0,02;

    Р(H 2) = 0,2 (1-0,1) = 0,18;

    Р(Н 3) = (1-0,2) 0,1 = 0,08;

    Р(H 4) = (1-0,2) (1-0,1) = 0,72.

    3) Так как гипотезы образуют полную группу событий, то должно выполняться равенство = 1.

    Проверяем: Р(H 1) + Р(Н 2) + Р(H 3) + Р(H 4) = 0,02 + 0,18 + + 0,08 + 0,72 = 1, таким образом, рассматриваемая группа гипо­тез верна.

    4) Условные вероятности для наблюдаемого события С при данных гипотезах будут: (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 1 , предполагает два попадания:

    (С) = 1; (С) = 1.

    (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H 4 предполагает отсутствие попаданий. Следовательно, гипотезы H 1 , и H 4 отпадают.

    5)Вероятности гипотез H 2 и H 3 вычисляем по формуле Бейеса:

    0,7, 0,3.

    Таким образом, с вероятностью приблизительно 70% (0,7) можно утверждать, что удачный выстрел принадлежит первому ракетному комплексу.

    5.4. Случайные величины. Закон распределения дискретной случайной величины

    Достаточно часто на практике рассматриваются такие испытания, в результате реализации которых случайным образом получается некоторое число. Например, при бросании игрального кубика выпадает число очков от 1 до 6, при взятии 6 карт из колоды можно получить от 0 до 4 тузов. За определенный промежуток времени (скажем, день или месяц) в городе регистрируется то или иное количество преступлений, происходит какое-то количество дорожно-транспортных происшествий. Из орудия производится выстрел. Дальность полета снаряда также принимает какое-либо значение случайным образом.

    Во всех перечисленных испытаниях мы сталкиваемся с так называемыми случайными величинами.

    Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной .

    Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.

    Далее будем обозначать случайные величины прописными латинскими буквами X, Y, Z и т.д., а их возможные значения – соответствующими строчными x, y, z. Например, если случайная величина имеет три возможных значения, то будем обозначать их так: , , .

    Итак, примерами случайных величин могут быть:

    1) количество очков, выпавших на верхней грани игрального кубика:

    2) число тузов, при взятии из колоды 6 карт;

    3) количество зарегистрированных преступлений за день или месяц;

    4) число попаданий в мишень при четырех выстрелов из пистолета;

    5) расстояние, которое пролетит снаряд при выстреле из орудия;

    6) рост случайно взятого человека.

    Можно заметить, что в первом примере случайная величина может принять одно из шести возможных значений: 1, 2, 3, 4, 5 и 6. Во втором и четвертом примерах число возможных значений случайной величины пять: 0, 1, 2, 3, 4. В третьем примере значением случайной величины может быть любое (теоретически) натуральное число или 0. В пятом и шестом примерах случайная величина может принимать любое действительное значение из определенного промежутка (а , b ).

    Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).

    Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

    Для задания случайной величины недостаточно перечислить ее всевозможные значения. Например, во втором и в третьем примерах случайные величины могли принимать одни и те же значения: 0, 1, 2, 3 и 4. Однако вероятности, с которыми эти случайные величины принимают свои значения, будут совершенно разными. Поэтому для задания дискретной случайной величины кроме перечня ее всех возможных значений нужно еще указать их вероятности.

    Соответствие между возможными значениями случайной величины и их вероятностями называютзаконом распределения дискретной случайной величины. , …, Х=

    Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. Он является одним из форм закона распределения.

    Пример 27. Случайным образом бросается монета. Построить ряд и многоугольник распределения числа выпавших гербов.

    Случайная величина, равная количеству выпавших гербов, может принимать два значения: 0 и 1. Значение 1 соответствует событию - выпадение герба, значение 0 – выпадению решки. Вероятности выпадения герба и выпадения решки одинаковы и равны . Т.е. вероятности, с которыми случайная величина принимает значения 0 и 1, равны . Ряд распределения имеет вид:

    X
    p

    Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

    Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

    Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

    Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

    Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

    D = A + B + C

    Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

    В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

    Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

    Обнаружение заболеваний первым врачом (А );

    Необнаружение заболевания первым врачом ();

    Обнаружение заболевания вторым врачом (В );

    Необнаружение заболевания вторым врачом ().

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

    Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

    Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

    Обозначим рассматриваемое событие через и запишем символически:

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

    Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

    Основные теоремы теории вероятности

    Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

    Запишем теорему сложения символически:

    Р(А + В) = Р(А)+Р(В) ,

    где Р - вероятность соответствующего события (событие указывается в скобках).

    Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

    Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

    Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

    Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

    Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

    Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

    Символически это записывается следующей формулой:

    Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

    На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

    Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

    Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

    Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

    Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

    Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

    Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

    Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

    Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

    Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

    \(\blacktriangleright\) Если для выполнения события \(C\) необходимо выполнение обоих совместных (которые могут произойти одновременно) событий \(A\) и \(B\) (\(C=\{A\) и \(B\}\) ), то вероятность события \(C\) равна произведению вероятностей событий \(A\) и \(B\) .

    Заметим, что если события несовместны, то вероятность их одновременного происхождения равна \(0\) .

    \(\blacktriangleright\) Каждое событие можно обозначить в виде круга. Тогда если события совместны, то круги должны пересекаться. Вероятность события \(C\) – это вероятность попасть в оба круга одновременно.

    \(\blacktriangleright\) Например, при подбрасывании игральной кости найти вероятность \(C=\) {выпадение числа \(6\) }.
    Событие \(C\) можно сформулировать как \(A=\) {выпадение четного числа} и \(B=\) {выпадение числа, делящегося на три}.
    Тогда \(P\,(C)=P\,(A)\cdot P\,(B)=\dfrac12\cdot \dfrac13=\dfrac16\) .

    Задание 1 #3092

    Уровень задания: Равен ЕГЭ

    В магазине продаются кроссовки двух фирм: Dike и Ananas. Вероятность того, что случайно выбранная пара кроссовок будет фирмы Dike, равна \(0,6\) . Каждая фирма может ошибиться в написании своего названия на кроссовках. Вероятность того, что фирма Dike ошибется в написании названия, равна \(0,05\) ; вероятность того, что фирма Ananas ошибется в написании названия, равна \(0,025\) . Найдите вероятность того, что случайно купленная пара кроссовок будет с правильным написанием названия фирмы.

    Событие A: “пара кроссовок будет с правильным названием” равно сумме событий B: “пара кроссовок будет фирмы Dike и с правильным названием” и C: “пара кроссовок будет фирмы Ananas и с правильным названием”.
    Вероятность события B равна произведению вероятностей событий “кроссовки будут фирмы Dike” и “название фирма Dike написала правильно”: \ Аналогично для события C: \ Следовательно, \

    Ответ: 0,96

    Задание 2 #166

    Уровень задания: Равен ЕГЭ

    Если Тимур играет белыми шашками, то он выигрывает у Вани с вероятностью 0,72. Если Тимур играет черными шашками, то он выигрывает у Вани с вероятностью 0,63. Тимур и Ваня играют две партии, причем во второй партии меняют цвет шашек. Найдите вероятность того, что Ваня выиграет оба раза.

    Ваня выигрывает белыми с вероятностью \(0,37\) , а черными с вероятностью \(0,28\) . События “из двух партий Ваня выиграл белыми”\(\ \) и “из двух партий Ваня выиграл черными”\(\ \) – независимы, тогда вероятность их одновременного наступления равна \

    Ответ: 0,1036

    Задание 3 #172

    Уровень задания: Равен ЕГЭ

    Вход в музей охраняют два охранника. Вероятность того, что старший из них забудет рацию равна \(0,2\) , а вероятность того, что младший из них забудет рацию равна \(0,1\) . Какова вероятность того, что у них не будет ни одной рации?

    Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. Тогда искомая вероятность равна \

    Ответ: 0,02

    Задание 4 #167

    Уровень задания: Равен ЕГЭ

    Прыгая с высоты 1 метр, Костя ломает ногу с вероятностью \(0,05\) . Прыгая с высоты 1 метр, Ваня ломает ногу с вероятностью \(0,01\) . Прыгая с высоты 1 метр, Антон ломает ногу с вероятностью \(0,01\) . Костя, Ваня и Антон одновременно прыгают с высоты 1 метр. Какова вероятность того, что из них только Костя сломает ногу? Ответ округлите до тысячных.

    События “при прыжке с высоты 1 метр Костя сломал ногу”\(,\ \) “при прыжке с высоты 1 метр Ваня не сломал ногу”\(\ \) и “при прыжке с высоты 1 метр Антон не сломал ногу”\(\ \) – независимы, следовательно, вероятность их одновременного наступления равна произведению их вероятностей: \ После округления окончательно получаем \(0,049\) .

    Ответ: 0,049

    Задание 5 #170

    Уровень задания: Равен ЕГЭ

    Максим и Ваня решили поиграть в боулинг. Максим справедливо прикинул, что в среднем он выбивает страйк один раз в восемь бросков. Ваня справедливо прикинул, что в среднем он выбивает страйк один раз в пять бросков. Максим и Ваня делают ровно по одному броску (независимо от результата). Какова вероятность того, что среди них не будет страйков?

    Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Максим не выбьет страйк равна \ Вероятность того, что Ваня не выбьет страйк равна \(1 - 0,2 = 0,8\) . Тогда искомая вероятность равна \[\dfrac{7}{8}\cdot 0,8 = 0,7.\]

    Ответ: 0,7

    Задание 6 #1646

    Уровень задания: Равен ЕГЭ

    Антон и Костя играют в настольный теннис. Вероятность того, что Костя попадет своим коронным ударом в стол равна \(0,9\) . Вероятность того, что Антон выиграет розыгрыш, в котором Костя попытался нанести коронный удар равна \(0,3\) . Костя попытался попасть своим коронным ударом в стол. Какова вероятность того, что Костя действительно попадет своим коронным ударом и в итоге выиграет этот розыгрыш?

    Так как рассматриваемые события независимы, то вероятность их одновременного наступления равна произведению их вероятностей. При этом вероятность того, что Антон не выиграет розыгрыш, в котором Костя попытался нанести свой коронный удар равна \(1 - 0,3 = 0,7\) . Тогда искомая вероятность равна \

    Учреждение образования «Белорусская государственная

    сельскохозяйственная академия»

    Кафедра высшей математики

    СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

    Лекция для студентов землеустроительного факультета

    заочной формы обучения

    Горки, 2012

    Сложение и умножение вероятностей. Повторные

    независимые испытания

    1. Сложение вероятностей

    Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

    Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

    Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

    Из данной теоремы следует:

    сумма вероятностей событий, образующих полную группу, равна единице;

    сумма вероятностей противоположных событий равна единице, т.е.
    .

    Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

    Решение . Обозначим события:

    A ={извлечён цветной шар};

    B ={извлечён белый шар};

    C ={извлечён красный шар};

    D ={извлечён синий шар}.

    Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

    Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

    Решение . Обозначим события:

    A ={вынуты шары одного цвета};

    B ={вынуты шары белого цвета};

    C ={вынуты шары чёрного цвета}.

    Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
    . Вероятность события В равна
    , где
    4,

    . Подставим k и n в формулу и получим
    Аналогично найдём вероятность события С :
    , где
    ,
    , т.е.
    . Тогда
    .

    Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

    Решение . Обозначим события:

    A ={среди вынутых карт не менее трёх тузов};

    B ={среди вынутых карт три туза};

    C ={среди вынутых карт четыре туза}.

    Так как A = B + C , а события В и С несовместны, то
    . Найдём вероятности событий В и С :


    ,
    . Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

    0.0022.

    1. Умножение вероятностей

    Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
    . Это определение распространяется на любое конечное число событий.

    Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

    Пример 4 . Два стрелка стреляют по цели. Обозначим события:

    A ={первый стрелок попал в цель};

    B ={второй стрелок попал в цель}.

    Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

    Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

    Эта теорема справедлива и для n независимых в совокупности событий: .

    Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

    Решение . Обозначим события:

    A

    B

    C ={оба стрелка попадут в цель}.

    Так как
    , а события А и В независимы, то
    , т.е. .

    События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
    или
    .

    Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

    A ={извлечён белый шар} ;

    B ={извлечён чёрный шар}.

    Перед началом извлечения шаров из урны
    . Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

    Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

    Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

    Решение . Обозначим события:

    A ={первым извлечён чёрный шар};

    B ={вторым извлечён чёрный шар}.

    События А и В зависимы, так как
    , а
    . Тогда
    .

    Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

    Решение . Обозначим события:

    A ={произойдут два попадания в цель};

    B ={первый стрелок попадёт в цель};

    C ={второй стрелок попадёт в цель};

    D ={третий стрелок попадёт в цель};

    ={первый стрелок не попадёт в цель};

    ={второй стрелок не попадёт в цель};

    ={третий стрелок не попадёт в цель}.

    По условию примера
    ,
    ,
    ,

    ,
    ,
    . Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

    Пусть события
    образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

    Или
    . Эта формула называется формулой полной вероятности , а события
    гипотезами .

    Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

    Решение . Обозначим события:

    A ={взятая деталь будет бракованной};

    ={деталь изготовлена на первом станке};

    ={деталь изготовлена на втором станке}.

    Вероятность того, что деталь изготовлена на первом станке, равна
    . Для второго станка
    . По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
    . Для второго станка эта вероятность равна
    . Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

    Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
    , равна
    , где
    - полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
    после того, как стало известно, что событие А уже наступило.

    Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

    Решение . Обозначим события:

    A ={куплена стандартная деталь};

    ={деталь изготовлена на первом заводе};

    ={деталь изготовлена на втором заводе}.

    По условию примера
    ,
    ,
    и
    . Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

    .

    Задания для самостоятельной работы

      Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

      В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

      На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

      Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

      Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

      Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

      Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

      На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

      В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

      На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

      Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

      Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то