График функции у sin х 2. Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel. Урок и презентация на тему: "Функция y=sin(x). Определения и свойства"

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").

Как построить график функции y=sin x? Для начала рассмотрим график синуса на промежутке .

Единичный отрезок берём длиной 2 клеточки тетради. На оси Oy отмечаем единицу.

Для удобства число π/2 округляем до 1,5 (а не до 1,6, как требуется по правилам округления). В этом случае отрезку длиной π/2 соответствуют 3 клеточки.

На оси Ox отмечаем не единичные отрезки, а отрезки длиной π/2 (через каждые 3 клеточки). Соответственно, отрезку длиной π соответствует 6 клеточек, отрезку длиной π/6 — 1 клеточка.

При таком выборе единичного отрезка график, изображённый на листе тетради в клеточку, максимально соответствует графику функции y=sin x.

Составим таблицу значений синуса на промежутке :

Полученные точки отметим на координатной плоскости:

Так как y=sin x — нечётная функция, график синуса симметричен относительно начала отсчёта — точки O(0;0). С учётом этого факта продолжим построение графика влево, то точки -π:

Функция y=sin x — периодическая с периодом T=2π. Поэтому график функции, взятый на на промежутке [-π;π], повторяется бесконечное число раз вправо и влево.

«Йошкар-Олинский техникум сервисных технологий»

Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel

/методическая разработка/

Йошкар – Ола

Тема . Построение и исследование графика тригонометрической функции y = sinx в табличном процессоре MS Excel

Тип урока – интегрированный (получение новых знаний)

Цели:

Дидактическая цель - исследовать поведение графиков тригонометрической функции y = sinx в зависимости от коэффициентов с помощью компьютера

Обучающие:

1. Выяснить изменение графика тригонометрической функции y = sin x в зависимости от коэффициентов

2. Показать внедрение компьютерных технологий в обучение математике, интеграцию двух предметов: алгебры и информатики.

3. Формировать навыки использования компьютерных технологий на уроках математики

4. Закрепить навыки исследования функций и построения их графиков

Развивающие:

1. Развивать познавательный интерес учащихся к учебным дисциплинам и умение применять свои знания в практических ситуациях

2. Развивать умения анализировать, сравнивать, выделять главное

3. Способствовать повышению общего уровня развития студентов

Воспитывающие :

1. Воспитывать самостоятельность, аккуратность, трудолюбие

2. Воспитывать культуру диалога

Формы работы на уроке – комбинированная

Дидактическое оснащение и оборудование:


1. Компьютеры

2. Мультимедийный проектор

4. Раздаточный материал

5. Слайды презентации

Ход урока

I . Организация начала урока

· Приветствие студентов и гостей

· Настрой на урок

II . Целеполагание и актуализация темы

Для исследования функции и построения ее графика требуется много времени, приходится выполнять много громоздких вычислений, это не удобно, на помощь приходят компьютерные технологии.

Сегодня мы научимся строить графики тригонометрических функций в среде табличного процессора MS Excel 2007.

Тема нашего занятия «Построение и исследование графика тригонометрической функцииy = sinx в табличном процессоре»

Из курса алгебры нам известна схема исследования функции и построения ее графика. Давайте вспомним как это сделать.

Слайд 2

Схема исследования функции

1. Область определения функции (D(f))

2. Область значения функции Е(f)

3. Определение четности

4. Периодичность

5. Нули функции (y=0)

6. Промежутки знакопостоянства (у>0, y<0)

7. Промежутки монотонности

8. Экстремумы функции

III . Первичное усвоение нового учебного материала

Откройте программу MS Excel 2007.

Построим график функции y=sinx

Построение графиков в табличном процессоре MS Excel 2007

График данной функции будем строить на отрезке x Є [-2π; 2π]

Значения аргумента будем брать с шагом, чтобы график получился более точным.

Т. к. редактор работает с числами, переведем радианы в числа, зная что П ≈ 3,14 . (таблица перевода в раздаточном материале).

1. Находим значение функции в точке х=-2П. Для остальных значение аргумента соответствующие значения функции редактор вычисляет автоматически.

2. Теперь у нас имеется таблица со значениями аргумента и функции. С помощью этих данных мы должны построить график этой функции с помощью мастера диаграмм.

3. Для построения графика надо выделить нужный диапазон данных, строки со значениями аргумента и функции

4..jpg" width="667" height="236 src=">

Выводы записываем в тетрадь (Слайд 5)

Вывод. График функции вида у=sinx+k получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОУ на k единиц

Если k >0, то график смещается вверх на k единиц

Если k<0, то график смещается вниз на k единиц

Построение и исследование функции вида у= k *sinx, k - const

Задание 2. На рабочем Листе2 в одной системе координат постройте графики функций y = sinx y =2* sinx , y = * sinx , на интервале (-2π; 2π) и проследите как изменяется вид графика.


(Чтобы заново не задавать значение аргумента давайте скопируем имеющиеся значения. Теперь вам надо задать формулу, и по полученной таблице построить график.)

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 6)

https://pandia.ru/text/78/510/images/image005_66.gif" width="16" height="41 src=">x , на интервале (-2π; 2π) и проследите как изменяется вид графика.

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 8)

https://pandia.ru/text/78/510/images/image008_35.jpg" width="649" height="281 src=">

Выводы записываем в тетрадь (Слайд 11)

Вывод. График функции вида у= sin(x+k) получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОХ на k единиц

Если k >1, то график смещается вправо вдоль оси ОХ

Если 0

IV . Первичное закрепление полученных знаний

Дифференцированные карточки с заданием на построение и исследование функции при помощи графика

Y=6 *sin(x)

Y= 1-2 sin х

Y= - sin (3х+ )

1. Область определения

2. Область значения

3. Четность

4. Периодичность

5. Промежутки знакопостоянства

6. Промежутки монотонности

Функция возрастает

Функция

убывает

7. Экстремумы функции

Минимум

Максимум

V . Организация домашнего задания

Построить график функции y=-2*sinх+1 , исследовать и проверить правильность построения в среде электронной таблицы Microsoft Excel. (Слайд 12)

VI . Рефлексия

ГРАФИКИ ФУНКЦИЙ

Функция синус


— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная .

Функция нечетная: sin(−x)=−sin x для всех х ∈ R .

Функция периодическая

sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R .

sin x = 0 при x = π·k , k ∈ Z .

sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z .

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z .

Функция косинус


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная .

Функция четная: cos(−x)=cos x для всех х ∈ R .

Функция периодическая с наименьшим положительным периодом 2π :

cos(x+2π· k ) = cos x, где k Z для всех х ∈ R .

cos x = 0 при
cos x > 0 для всех
cos x < 0 для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1 в точках:
Наименьшее значение функции sin x = −1 в точках:

Функция тангенс

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

Функция арксинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок -π /2 arcsin x π /2, т.е. арксинус — функция ограниченная .

Функция нечетная: arcsin(−x)=−arcsin x для всех х ∈ R .
График функции симметричен относительно начала координат.

На всей области определения.

Функция арккосинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок 0 arccos x π , т.е. арккосинус — функция ограниченная .


Функция является возрастающей на всей области определения.

Функция арктангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арктангенс — функция ограниченная .

Функция нечетная: arctg(−x)=−arctg x для всех х ∈ R .
График функции симметричен относительно начала координат.

Функция является возрастающей на всей области определения.

Функция арккотангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арккотангенс — функция ограниченная .

Функция не является ни четной, ни нечетной.
График функции несимметричен ни относительно начала координат, ни относительно оси Оy.

Функция является убывающей на всей области определения.

Х y O Единичная тригонометрическая окружность


3 =180 3,14 рад R R О Р М R Рассмотрим окружность радиуса R. Построим MOP: МР = R 1 радиан Величина МОР равна 1 радиан МР =1рад МОР 57 17= 1рад Радианная мера угла


4 Длина окружности выражается формулой C=2 R, где R – радиус окружности. 3, Окружность, радиус которой равен 1, называется … Точки М,Р,К,N – назовем узловыми. Отметим точки А,В,С. Длину единичной окружности удобно измерять в радианах. Если R=1, то С=2 рад! Наименование радиан обычно опускают. y х К Р С В А Длина дуги половины окружности равна рад. М N рад – четверть длины окружности рад – три четверти длины окружности О 1 единичной Радианная мера угла uk-badge uk-margin-small-right"> 5 Градусная мера Радианная мера0 Итак, величину угла поворота точки, а также величину дуги единичной окружности, можно задавать: I четверть II четверть III четверть IV четверть О в градусной мере в радианной мере Радианная мера угла 0 2 I четверть II четверть III четверть IV четверть О 2


6 «Размотаем» окружность как нить на координатный луч с началом в точке 0 Установим соответствие между множеством действительных чисел на числовой прямой и точками единичной окружности. Такое «разматывание» можно продолжать бесконечно. 3,14 0 Построение графика х y=sin x














13 Преобразование графиков Функция Преобразование 1 y= f (x) + mПараллельный перенос вдоль оси OY на m единиц 2 y= f (x – n)Параллельный перенос вдоль оси OX на n единиц 3 y=А f (x) Растяжение вдоль оси OY относительно оси OX в А раз 4 y= f (k x)Сжатие вдоль оси OX относительно оси OY в k раз 5 y= – f (x) Симметричное отражение относительно оси OX 6 y= f (– x) Симметричное отражение относительно оси OY y = f (x)














20 Построим график функции y= 3 sin(2x+ /3)–2 Этапы построения: 1. y= sin x – синусоида 3. y= sin(2x+ /3) – перенос на /3 единиц влево 4. y= 3 sin(2x+ /3) – растяжение в 3 раза вдоль оси Oy 2. y= sin 2x – сжатие в 2 раза вдоль оси Ох 5. y= 3 sin(2x+ /3)–2 – перенос на 2 единицы вниз





26 Преобразование графиков Функция Преобразование 1 y=sin(kx)Сжатие вдоль оси OX относительно оси OY в k раз 2 y=sin(x–m)Параллельный перенос вдоль оси OX на m единиц 3 y=А sin x Растяжение вдоль оси OY относительно оси OX в А раз 4 y=sin x+nПараллельный перенос вдоль оси OY на n единиц 5 y= – sin x Симметричное отражение относительно оси OX 6 y= sin (–x) Симметричное отражение относительно оси OY y = Asin(kx–n)+m
28 1.Функция y=sin x существует при всех действительных значениях x, причем, график ее является сплошной линией (без разрывов), т.е. функция непрерывна. 2.Функция y=sin x нечетная, ее график симметричен относительно начала координат 3.Наибольшие и наименьшие значения. Все возможные значения функции sinx ограничены неравенством -1 sinx 1, причем 4. Нули функции (точки пересечения графика функции с осью абсцисс): sinx=0, если x= n. (n Z) Некоторые свойства функции y=sinx sin x= – 1, если sin x=1, если

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то