Малые колебания с двумя степенями свободы. Колебания системы с двумя степенями свободы. Колебания с несколькими степенями свободы

В частном случае системы с двумя степенями свободы квадратичные формы Т, П, Ф будут соответственно равны

а дифференциальные уравнения малых колебаний примут вид

Рассмотрим свободные колебания консервативной системы. В этом случае

и дифференциальные уравнения принимают вид:

Начальные условия для имеют вид:

В силу положительной определенности квадратичной формы кинетической энергии обобщенные инерционные коэффициенты удовлетворяют соотношениям

а аналогичные соотношения для квазиупругих коэффициентов

являются достаточными условиями устойчивости положения равновесия системы.

Коэффициенты и , связывающие в уравнениях (4.5) обобщенные координаты и , называют соответственно коэффициентами инерционной и упругой связи. Если в колебательной системе коэффициент , ее называют системой с упругой связью, а если – системой с инерционной связью.

Парциальной системой, соответствующей обобщенной координате , называют условную колебательную систему с одной степенью свободы, получаемую из исходной системы, если наложить запрет на изменение всех обобщенных координат, кроме . Парциальными частотами называют собственные частоты парциальных систем:

Поскольку уравнения (4.5) содержат только обобщенные координаты и их вторые производные по времени, ищем их решение в виде

где – пока неопределенные величины.

Подставив (4.8) в (4.5) и приравняв коэффициенты при синусах, получим однородную алгебраическую систему относительно и :

Для того, чтобы однородная алгебраическая система (4.9) имела ненулевое решение, она должна быть вырожденной, т.е. ее определитель должен равняться нулю:

Следовательно, решение (4.7) будет иметь смысл только при тех значениях , которые удовлетворяют условию (4.9). Раскрывая (4.10), получаем

Уравнение, представленное в форме (4.10), (4.11) или (4.12) называют частотным. Как видно из (4.12) частотное уравнение – биквадратное уравнение. Найденные из (4.10)–(4.12) значения называют собственными частотами колебаний системы.

Исследование корней частотного уравнения позволяет сделать следующие выводы:

1) если положение равновесия устойчивое, то оба корня частотного уравнения положительны;

2) первая собственная частота системы всегда меньше меньшей парциальной частоты, а вторая – больше большей парциальной частоты.

Для колебательных систем с упругой связью ( = 0) справедливо равенство

Запишем два частных независимых решения, соответствующих частотам и , в виде


где вторая цифра в индексе соответствует номеру частоты, или номеру тона колебаний.

Константы не являются независимыми, так как система (4.9) вырожденная. Коэффициенты связаны между собой соотношениями

Где . (4.15)

Где . (4.16)

С учетом (4.15) и (4.16) частные решения (4.14) будут иметь вид

Колебания, уравнения которых имеют вид (4.17) называют главными колебаниями. Они представляют собой гармонические колебания с частотами и соответственно. Коэффициенты называют коэффициентами распределения амплитуд. Они характеризуют отношение амплитуд в главных колебаниях или форму главных колебаний.

Коэффициенты распределения амплитуд и, следовательно, формы главных колебаний, как и собственные частоты, определяются параметрами самой колебательной системы и не зависят от начальных условий. Поэтому формы колебаний называют, так же как и частоты, собственными формами колебаний при колебаниях по соответствующему тону.

Общее решение системы уравнений (4.5) может быть представлено как сумма найденных частных решений (4.17)

Общее решение содержит четыре неопределенные постоянные , которые должны определяться из начальных условий (4.6).

При произвольных начальных условиях обе константы и отличны от нуля. Это означает, что изменение во времени каждой обобщенной координаты будет представлять собой сумму гармонических колебаний с частотами и . А такие колебания являются не только не гармоническими, но в общем случае и не периодическими.

Рассмотрим случай свободных колебаний системы, когда собственные частоты колебаний системы и мало отличаются друг от друга:

Обозначим разность аргументов синусов в общем решении (4.18) уравнений свободных колебаний

При величина , а с возрастанием времени эта зависимость из-за малости увеличивается очень медленно. Тогда

С учетом последнего равенства, общее решение уравнений свободных колебаний (4.18) может быть записано в виде:

В этих уравнениях

Так как выражения (4.21) зависят от и , а угол медленно изменяется с изменением времени, то рассматриваемые колебания (4.20) будут колебаниями с периодически изменяющейся амплитудой. Период изменения амплитуды в этом случае значительно больше периода колебаний (рис. 4.1). Если коэффициенты распределения амплитуд и имеют разные знаки, то максимуму соответствует минимум и наоборот. При усилении первого главного колебания интенсивность второго главного колебания уменьшается и наоборот, то есть энергия движения системы периодически оказывается как бы сосредоточенной то в одном, то в другом звене этой вибрирующей системы. Такое явление называют биением.

Возможен другой подход к решению задачи о свободных колебаниях системы – найти какие-то новые обобщенные координаты и называемые нормальными или главными , для которых при любых начальных условиях движение будет одночастотным и гармоническим.

Зависимость между обобщенными координатами и , выбранными произвольно, и главными координатами и можно выразить так:

где и – коэффициенты распределения амплитуд (коэффициенты формы). Можно показать, что переход от исходных координат к главным приводит квадратичные формы кинетической и потенциальной энергии к каноническому виду:

Подставив полученные для и выражения (4.23) в уравнения Лагранжа второго рода, получим уравнения малых колебаний системы в главных координатах: . Выражения кинетической и потенциальной энергии будут иметь канонический вид: и

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

УДК 531.8:621.8

Д.М.Кобылянский, В.Ф.Горбунов, В.А.Гоголин

СОВМЕСТИМОСТЬ ВРАЩЕНИЯ И КОЛЕБАНИЙ ТЕЛ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

Рассмотрим плоское тело Т, на которое наложены три идеальные связи, препятствующие только перемещениям тела по всем направлениям, как показано на рис.1а. Связями являются точки А, В, С, расположенные в вершинах равностороннего треугольника. Выбрав систему координат так, чтобы ее центр совпадал с центром треугольника и был совмещен с ним (рис.1а), имеем координаты связей: А(0;Я), Б(^л/3 /2; -Я/2), С^-Лд/э /2; -Я/2), где Я есть расстояние от центра треугольника до его вершин, то есть радиус окружности проходящей через точки А, В, С. В таком положении тело будет иметь одну степень свободы, только в том случае, если нормали к ее границе в точках А, В, С пересекаются в одной точке, которая будет мгновенным центром скоростей. В противном случае число степеней свободы тела равно нулю и оно не может не только поступательно перемещаться, но и совершать вращательное движение. Когда тело имеет одну степень свободы, оно может начать вращение с мгновенным центром вращения в точке пересечения указанных выше нормалей. Пусть эта точка будет началом координат, точкой О. Если мгновенный центр вращения не изменяет своего положения, то единственно возможная форма тела Т -круг радиуса Я с центром в точке О.

Возникает задача - существуют ли другие формы тела, позволяющие ему вращаться относительно некоторого подвижного центра так, чтобы гра-

ница тела непрерывно проходила через три точки А, В, С без нарушения этих связей? В известной нам литературе такая задача не рассматривалась и по-видимому решается впервые.

Для решения этой задачи рассмотрим сначала движение треугольника АВС как жесткого тела, относительно системы координат Х1О1У1, связанной с телом Т (рис.1б). Тогда, если движение треугольника происходит так, что его вершины непрерывно остаются на границе тела при полном повороте треугольника на 360°, то и обратно тело будет совершать требуемое движение относительно неподвижного треугольника АВС и связанной с ним системы координат ХОУ.

Движение треугольника АВС зададим как поворот относительно центра О и перемещения центра О по оси ОіХі на/(г), по оси ОіУі на g(t). Тогда параметрическое уравнение траектории точки А будет иметь вид: х=гяШ +/(г) ; уі=г-єо,?ґ +g(t), ґє (1)

Так как при г=0 точка О должна совпадать с точкой О1, то должно выполнятся условие /(0)= g(0)=0. Потребуем, чтобы при повороте на угол г=2п/3 точка А совпадет с точкой В1, точка В - с точкой Сі, а точка С

С точкой А1. При повороте на угол г=4п/3 точка А должна перейти в точку С1, точка В - в точку А1, а точка С - в точку В1. Объединение данных требований на движение вершин треугольника приводит к условиям на значения функций перемещения центра вращения /(0)=/(2 п/3)=/(4 п/3)=0; g0)=g(2л/3)=g(4л/3)=0 . (2) Условиям (2) удовлетворяет широкий класс функций, в частности функции вида sin(3mt/2), где т целое, и их линейные комбинации с переменными в общем случае коэффициентами вида:

Н (г) = ^ Ьт (г) 8Іп(3тґ / 2)

Кроме того, в качестве

Рис.1. Расчетная схема: а) - положение неподвижного тела и его связей в системе ХОУ; б) - положение неподвижной системы Х1О1У1, связанной с телом, и подвижной системы ХОУ, связанной с треугольником АВС

Теоретическая механика

Рис.2. Формы тел и траектории движения их центров вращения

Рис. 3. Положение тела при повороте на угол ри соответствующая траектория движения его центра вращения

функций перемещения могут быть взяты функции, определяющие замкнутые кривые, такие например, как циклоиды, трохоиды, лемнискаты, с подходящими по условию (2) параметрами. При этом все возможные функции должны быть периодическими с периодом 2п/3.

Таким образом, система параметрических уравнений (1) с условиями на значения функций /(^, g(t) (2) или в их виде (3) дает искомое уравнение границы тела Т. На рис.2 представлены примеры возможных форм тела, удовлетворяющих условиям поставленной задачи. В центре каждого рисунка показана траектория центра вращения О1, а точечные связи А, В, С увеличены для их лучшей визуализации. Эти примеры показывают, что даже простые виды функций из класса, определяемого выражением (3) с постоянными коэффициентами, дают нам достаточно широкий набор кривых, описывающих границы тел, совершающих вращение и

колебания одновременно при наличии только одной степени свободы. Граничные кривые а), в) на рис.2 соответствуют перемещению центра вращения только по горизонтальной оси

ОіХі по гармоническому закону, и как видно имеют две оси симметрии и могут быть как чисто выпуклыми, овальными (рис. 2а), так и сочетать выпуклость с вогнутостью (рис.2б). При вертикальном и горизонтальном гармоническом законе с одинаковой амплитудой перемещения центра вращения граничные кривые теряют симметричность (рис. 2 в,г). Существенное влияние частоты гармонических колебаний на форму граничной кривой тела показано на рис.2 д, е. Не проводя в данной работе полный анализ влияния амплитуды и частоты на форму и геометрические свойства граничных кривых, хотелось отметить, что представленные примеры на рис.2 уже показывают возможность решения технических задач по выбору нужной формы

тела для совмещения его вращательного движения с колебаниями в плоскости вращения.

Рассматривая теперь перемещение тела относительно неподвижной системы координат ХОУ, связанной с треугольником АВС, то есть переходя из системы координат Х1О1У1 в систему координат ХОУ, получим следующие параметрические уравнения граничной кривой тела при заданном угле поворота p x=cosp-

Cos p (4)

или с учетом уравнений (1) уравнения (4) принимают вид x = cosp-

- [ R cos(t) + g (t) - g (p)] sin p, y = sin p +

Cos p.

Уравнения (5) позволяют описать траекторию любой точки тела по ее заданным поляр-

t-g.i м*4<. п-і

t-ÍLÍtWM. д-0

Рис. 4. Варианты форм тел с различным числом связей, обеспечивающие совместность вращения и колебания тел

ным координатам R,t. В частности при R=0, t=0 имеем точку, совпадающую с началом координат Оь то есть центр вращения, траектория движения которого в рассматриваемой схеме описывается уравнениями, следующими из (5):

*0 = -f (ф) cos ф + g (ф) sin ф, y0 = - f (ф) sin ф- g (ф) cos р.

На рис.3 показан пример положений тела (рис.2б) при его повороте на угол ф, а в центре каждого рисунка показана траектория центра вращения

Оі , соответствующая повороту тела на этот угол. Технически несложно сделать анимацию

показанного движения тела на рис.3 вместо физической модели, однако рамки журнальной статьи могут это позволить только в электронном варианте. Показанный пример был все-таки

Обобщением рассмотренной задачи является система п идеальных связей в виде точек, расположенных в вершинах правильного «-угольника, препятствующих только поступательным перемещениям тела. Поэтому, как и в случае с треугольником, тело может начать совершать поворот относительно центра вращения, являющегося точкой пересечения нормалей к границе тела в точках связи. В этом случае уравнение траектории точки тела А, находящейся на оси ОУ, и отстоящей от центра вращения на расстоянии Я, будет иметь такой же вид как и (1). Условия на значения функций перемещения центра вращения (2) в этом случае примут

Кобылянский Горбунов

Дмитрий Михайлович Валерий Федорович

Аспирант каф. стационарных и - докт. техн. наук, проф. каф. ста-

транспортных машин ционарных и транспортных машин

f(2kп/п)=g(2kп/п)=0. (7)

Условию (7) соответствуют периодические функции с периодом 2п/п, например 8т(п-т4/2), а также их линейные комбинации вида (3) и другие функции, описывающие замкнутые кривые. Аналогичные, указанным выше, рассуждения приводят к тем же уравнениям (4-6), позволяющим рассчитать форму тела, его положения при повороте и траекторию центра вращения при согласованных с вращением колебаниях тела. Примером таких расчетов служит рис.4, на котором пунктирной линией показано начальное положение тел, сплошной линией - положение тел при повороте на угол л/3 , а в центре каждого рисунка полная траектория центра вращения при полном повороте тела. И хотя в этом примере рассмотрено только горизонтальное перемещение центра вращения О, как центра п-угольника, полученные результаты показывают широкий спектр возможных форм тела с одной степенью свободы, сочетающего вращательное движение с колебаниями при наличии четырех, пяти и шести связей.

Полученная методика расчета совместности движений вращения и колебания тел с одной степенью свободы может также быть без каких-либо дополнений использована и для пространственных тел, у которых запрещены перемещения по третьей координате и повороты в других координатных плоскостях.

Гоголин Вячеслав Анатольевич

Докт. техн. наук, проф. каф. прикладной математик и

Пусть дана система с двумя степенями свободы и - обобщенные координаты. Кинетическая и потенциальная энергия системы дается формулами (10.2):

Функции Т и П определенно положительны, а потому:

Подставив (10.2) в (10.12), получим дифференциальные уравнения малых колебаний системы с двумя степенями свободы:

Система имеет нулевое решение A=B=0, соответствующее устойчивому положению равновесия. Для ненулевых решений составим из (10.15) отношение:

Квадратное (относительно ) уравнение (10.18) в силу неравенств устойчивости имеет два вещественных положительных корня. Расположим их в порядке возрастания:

Для второго главного колебания:

(10.21)

Главные колебания являются колебаниями гармоническими.

Подставив поочередно и в (10.16), найдем связи между амплитудами A и B в главных колебаниях: . Множители и называют коэффициентами собственных форм (коэффициентами распределения амплитуд). Они могут быть как положительными, так и отрицательными. При обе координаты в главном колебании находятся в одной фазе; при - в противофазе.

Результирующее движение по каждой координате будет суммой двух главных колебаний:

(10.22)

где - зависят от начальных условий, - от начальных условий не зависят и определяются параметрами самой колебательной системы. В общем случае частоты и несоизмеримы, а потому результирующее движение не будет периодическим.

1. Определить собственные частоты и собственные формы колебаний (малых) двойного математического маятника, образованного двумя материальными точками равной массы m и двумя стержнями длиной каждый.

Подобная система в общем виде была рассмотрена в примере 2 (§34). Воспользуемся полученными там формулами (2) и (3).



При , получим:

Так как колебания малые, то с точностью до малых второго порядка включительно:

(3)

С учетом (3) из (1), замечаем:

(4)

Сравнивая (4) и (2), замечаем:

Раскрывая уравнение (7.52) частот, получим:

Из (9.50) находим коэффициенты распределения: .

Первое главное колебание:

Движение в фазе - в каждое мгновение стержни вращаются в одном направлении.

Второе главное колебание:

Движение в противофазе – в каждое мгновение стержни вращаются в прямо противоположных направлениях.

Формы колебаний показаны на рис. 50. Во втором главном колебании имеется особенная точка F, которая остается неподвижной. Такие точки называют узлами. Концевая точка O к узлам не относится.

2. Два твердых тела с массами и и две пружины, жесткостью и , объединены в систему, которая располагается на гладкой горизонтальной плоскости и может совершать малые прямолинейные колебания.

Первое главное колебание:

Тела движутся в фазе, либо вправо либо влево. Амплитуда колебаний второго тела в 1,62 раза больше.

Второе главное колебание:

Тела движутся в противофазе: либо навстречу друг другу, к узлу, либо расходятся от узла. Амплитуда колебаний второго тела составляет 0,62 амплитуды первого.

Из уравнений движения консервативной механической системы около устойчивого положения равновесия

в случае двух степеней свободы имеем:

(1)

(Согласно критерию Сильвестра:

(1) система дифференциальных уравнений малых свободных колебаний механической системы с двумя степенями свободы около устойчивого положения равновесия . Ее решение ищется в виде:

(2)

Подстановка этого решения в систему дифференциальных уравнений малых колебаний дает:

(3)

Относительно A и B это система однородных алгебраических уравнений. Она имеет нетривиальное решение, когда определитель системы равен нулю:

(4)

Это биквадратное уравнение называется уравнением частот, оно имеет два положительных корня , которым соответствуют два решения системы дифференциальных уравнений малых колебаний:

Таким образом, каждая обобщенная координата находится как сумма двух колебаний разной частоты, которые называются главными колебанииями . При этом, как следует из системы (3), амплитуды главных колебаний связаны между собой следующим образом:

(5)

где - коэффициенты формы главных колебаний.

В итоге решение уравнений свободных колебаний (1) окончательно принимает вид:

(6)

Входящие в(6) амплитуды , и начальные фазы , колебаний определяются из начальных условий.

Вынужденные колебания механических систем с двумя степенями свободы. Динамический гаситель колебаний

Исключение нежелательных колебаний в механических системах называется виброзащитой (демпфированием). Используемые при этом технические устройства называются виброгасителями (демпферами).

Принцип работы динамического гасителя основан на использовании явления антирезонанса, когда действие периодически изменяющейся возмущающей обобщенной силы соответствующей одной координате, нейтрализуется действием потенциальной обобщенной силы, соответствующей другой координате.

Пусть к механической системе помимо консервативных сил приложена возмущающая сила, которая изменяется с течением времени по гармоническому закону



Дифференциальные уравнения движения механической системы в этом случае имеют вид:

Общее решение системы линейных дифференциальных неоднородных(в данном случае) уравнений ищем как сумму двух решений: ,- общее решение системы однородных дифференциальных уравнений; -частное решение системы неоднородных дифференциальных уравнений.

С учетом зависимости возмущающей силы от времени частное решение ищется в виде

Подстановка его в систему дифференциальных уравнений дает:

Решая эту систему по правилу Крамера, получим

Поскольку совпадает с левой частью уравнения частот и обращается в ноль

при совпадении частоты возмущающей силы с одной из частот собственных

колебаний или Коэффициенты A и B при этом обращаются в бесконечность. Таким образом, в случае колебаний системы с двумя степенями свободы существуют две резонансные частоты

Общее решение системы дифференциальных уравнений вынужденных

колебаний при имеет вид:

Как видно, за счет выбора параметров колеблющейся системы можно добиться, например, выполнения условия А =0, т. е. амплитуда вынужденных колебаний, соответствующих первой обобщенной координате, обращается в ноль.

Такое явление и называется антирезонансом.

В рассматриваемом случае это имеет место, если

Основные понятия и гипотезы теории удара. Основное уравнение теории удара

Явление, при котором за малый промежуток времени, т.е. почти мгновенно, скорости точек материальных объектов изменяются на конечные величины, называется ударом .

Так как при ударе конечное изменение скоростей происходит за весьма малый промежуток времени, то при этом возникают очень большие ускорения, а, следовательно, и очень большие силы. Эти силы действуют в течение весьма малого промежутка времени, но их импульсы за этот промежуток времени являются конечными величинами.

Силы, возникающие при ударе в течение малого промежутка времени, но достигающие при этом большой величины, так что их импульсы за этот промежуток времени являются конечными величинами, называются ударными силами .

Малый промежуток времени, в течение которого длится удар, называется временем удара. Импульсы ударных сил за время удара называются ударными импульсами .

Пусть дана МТ массы m, которая движется под действием обычной (неударной) силы . В момент , когда рассматриваемая МТ имеет скорость – скорость до удара, на нее начинает действовать ударная сила , действие которой прекращается в момент . Определим движение МТ под действием сил и за время удара .

Применяя теорему об изменении количества движения точки, получим:

,

где – скорость точки в момент после удара.

По теореме о среднем значении определенного интеграла можно написать:

,

где и есть средние значения сил и в некоторый промежуток времени. При этом является конечной величиной; ударная сила за время удара достигает весьма большой величины (порядка ). Поэтому произведение будет пренебрежимо мало по сравнению с произведением , являющимся величиной конечной.

Согласно (3.7), система уравнений при II =2 имеет вид:

Поскольку речь идет о свободных колебаниях, правая часть системы (3.7) принята равной нулю.

Решение ищем в виде

После подстановки (4.23) в (4.22) получим:

Эта система уравнений справедлива при произвольном t, поэтому выражения, заключенные в квадратные скобки, равны нулю. Тем самым получаем линейную систему алгебраических уравнений относительно Л и В.

Очевидное тривиальное решение этой системы Л = О, В = О согласно (4.23) отвечает отсутствию колебаний. Однако наряду с этим решением существует и нетривиальное решение Л * О, В Ф 0 при условии, что определитель системы А (к 2) равен нулю:

Этот определитель называют частотным , а уравнение относительно k - частотным уравнением. В раскрытом виде функция A(k 2) может быть представлена как

Рис. 4.5

При ЯцЯд - ^2 > ® и с п ^-4>0 график A (k 2) имеет вид параболы, пересекающей ось абсцисс (рис. 4.5).

Покажем, что для колебаний около устойчивого положения равновесия приведенные выше неравенства соблюдаются. П реобразусм выражение для кинетической энергии следующим образом:

При q , = 0 имеем Т = 0,5a .

Далее докажем, что корнями частотного уравнения (4.25) служат два положительных значения к 2 и к 2 (в теории колебаний меньшему индексу отвечает меньшая частота, т. е. k { С этой целью введем сначала понятие парциальной частоты. Под этим термином понимают собственную частоту системы с одной степенью свободы, полученной из исходной системы закреплением всех обобщенных координат, кроме одной. Так, например, если в первом из уравнений системы (4.22) принять q 2 = 0, то парциальной частотой будет p { =yjc u /a n . Аналогичным образом, закрепляя р 2 ~^с п /а 21 .

Чтобы частотное уравнение (4.25) имело два действительных корня к х и k 2 , необходимо и достаточно, чтобы, во-первых, график функции А (к 2) при к = 0 имел бы положительную ординату, а во-вторых, чтобы он пересекал ось абсцисс. Случай кратных частот к { = к . } , а также обращение низшей частоты в нуль, здесь не рассматривается. Первое из этих условий соблюдается, поскольку д (0) = с„с 22 - с и > 0 В справедливости второго условия легко убедиться, подставив в зависимость (4.25) к = к = р 2 ; при этом А(р, 2) Информация такого рода при инженерном расчете облегчает прогнозы и оценки.

Полученным двум значениям частот к , и к 2 соответствуют частные решения вида (4.23), поэтому общее решение имеет следующую форму:

Таким образом, каждая из обобщенных координат участвует в сложном колебательном процессе, представляющем собой сложение гармонических движений с разными частотами, амплитудами и фазами (рис. 4.6). Частоты k t и к 2 в общем случае несоизмеримы, поэтому q v ц, не являются периодическими функциями.


Рис. 4.6

Отношение амплитуд свободных колебаний при фиксированной собственной частоте называют коэффициентом формы. Для системы с двумя степенями свободы коэффициенты формы (3.= BJA." определяются непосредственно из уравнений (4.24):

Таким образом, коэффициенты формы р,= В 1 /А [ и р.,= В.,/А., зависят только от параметров системы и не зависят от начальных условий. Коэффициенты формы характеризуют для рассматриваемой собственной частоты к. распределение амплитуд по колебательной цепи. Совокупность этих амплитуд образует так называемую форму колебаний.

Отрицательное значение коэффициента формы означает, что колебания находятся в противофазах.

При использовании стандартных программ на ЭВМ иногда используют нормированные коэффициенты формы. Под этим термином понимают

В коэффициенте р‘ г индекс i отвечает номеру координаты, а индекс г- номеру частоты. Очевидно, что или Легко заметить, что р*

В системе уравнений (4.28) оставшиеся четыре неизвестных А г А 2 , ос, сх 2 определяются с помощью начальных условий:

Наличие линейной силы сопротивления так же, как и в системе с одной степенью свободы, приводит к затуханию свободных колебаний.

Рис. 4.7

Пример. Определим собственные частоты, парциальные частоты и коэффициенты формы для колебательной системы, показанной на рис. 4.7,а. Принимая в качестве обобщенных координат абсолютные перемещения масс.г, = q v x 2 = q. r запишем выражения для кинетической и потен циальной энергий:

Таким образом,

После подстановки в частотные уравнения (4.25) получаем

При этом Согласно (4.29)

На рис. 4.7, б приведены формы колебаний. При первой форме колебаний массы перемещаются синхронно в одном направлении, а при второй - встречно. Кроме того, в последнем случае появилось сечение N, не участвующее в колебательном процессе с собственной частотой k r Это так называемый узел колебаний.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то