Записать пример в виде неравенства. Неравенства. Виды неравенств. Двойные, тройные неравенства и т.д


Обратной стороной равенства выступает неравенство . В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.

Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.

Навигация по странице.

Что такое неравенство?

Понятие неравенства , как и , связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и - одинаковые, про них можно сказать, что они равные. А вот два объекта и отличаются, то есть, они не равны или неравные .

Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.

Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и . Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.

В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.

Не равно, больше, меньше

Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше , а какая – меньше .

Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел , отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.

Приведем пример. Рассмотрим два отрезка AB и CD , и сравним их длины . Очевидно, они не равны, также очевидно, что отрезок AB длиннее отрезка CD . Таким образом, согласно смыслу слова «длиннее», длина отрезка AB больше длины отрезка CD , и в то же время длина отрезка CD меньше длины отрезка AB .

Еще пример. С утра была зафиксирована температура воздуха 11 градусов Цельсия, а в обед – 24 градуса. Согласно , 11 меньше 24 , следовательно, значение температуры с утра было меньше, чем ее значение в обед (температура в обед стала больше, чем была температура с утра).

Запись неравенств с помощью знаков

На письме приняты несколько знаков для записи неравенств. Первый из них – знак не равно , он представляет собой перечеркнутый знак равно: ≠. Знак не равно ставится между неравными объектами. Например, запись |AB|≠|CD| обозначает, что длина отрезка AB не равна длине отрезка CD . Аналогично, 3≠5 – три не равно пяти.

Аналогично используются знак больше > и знак меньше ≤. Знак больше записывается между большим и меньшим объектами, а знак меньше – между меньшим и большим. Приведем примеры использования этих знаков. Запись 7>1 читается как семь больше одного, а записать, что площадь треугольника ABC меньше площади треугольника DEF с использованием знака ≤ можно как SABC≤SDEF .

Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.

Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:

Определение.

Неравенства – это имеющие смысл алгебраические выражения, составленные с использованием знаков ≠, <, >, ≤, ≥.

Строгие и нестрогие неравенства

Определение.

Знаки меньше называют знаками строгих неравенств , а записанные с их помощью неравенства – строгими неравенствами .

В свою очередь

Определение.

Знаки меньше или равно ≤ и больше или равно ≥ называют знаками нестрогих неравенств , а составленные с их использованием неравенства – нестрогими неравенствами .

Сфера применения строгих неравенств понятна из вышеприведенной информации. А для чего нужны нестрогие неравенства? На практике с их помощью удобно моделировать ситуации, которые можно описать фразами «не больше» и «не меньше». Фраза «не больше» по сути означает меньше или столько же, ей отвечает знак меньше или равно вида ≤. Аналогично, «не меньше» значит столько же или больше, ей соответствует знак больше или равно ≥.

Отсюда становится понятно, почему знаки < и > получили название знаков строгих неравенств, а ≤ и ≥ - нестрогих. Первые исключают возможность равенства объектов, а вторые – допускают ее.

В заключение этого пункта покажем пару примеров использования нестрогих неравенств. Например, с помощью знака больше или равно можно записать тот факт, что a является неотрицательным числом, как |a|≥0 . Еще пример: известно, что среднее геометрическое двух положительных чисел a и b меньше или равно их среднему арифметическому, то есть, .

Верные и неверные неравенства

Неравенства могут быть верными или неверными.

Определение.

Неравенство является верным , если оно соответствует введенному выше смыслу неравенства, в противном случае оно является неверным .

Приведем примеры верных и неверных неравенств. Например, 3≠3 – это неверное неравенство, так как числи 3 и 3 равные. Другой пример: пусть S – это площадь некоторой фигуры, тогда S<−7 – неверное неравенство, так как известно, что площадь фигуры по определению выражается неотрицательным числом. И еще пример неверного неравенства: |AB|>|AB| . А вот неравенства −3<12 , |AB|≤|AC|+|BC| и |−4|≥0 – верные. Первое из них отвечает , второе – выражает неравенство треугольника , а третье – согласуется с определением модуля числа.

Отметим, что наряду со словосочетанием «верное неравенство» используются такие словосочетания: «справедливое неравенство», «имеет место неравенство» и т.п., означающие одно и то же.

Свойства неравенств

Согласно тому, как мы ввели понятие неравенства, можно описать основные свойства неравенств . Понятно, что объект не может быть не равен самому себе. В этом состоит первое свойство неравенств. Второе свойство не менее очевидно: если первый объект не равен второму, то второй не равен первому.

Введенные на некотором множестве понятия «меньше» и «больше» задают на исходном множестве так называемые отношения «меньше» и «больше». Это же относится и к отношениям «меньше или равно» и «больше или равно». Они также обладают характерными свойствами.

Начнем со свойств отношений, которым соответствуют знаки < и >. Перечислим их, после чего дадим необходимые комментарии для пояснения:

  • антирефлексивность;
  • антисимметричность;
  • транзитивность.

Свойство антирефлексивности с помощью букв можно записать так: для любого объекта a неравенства a>a и ab , то ba . Наконец, свойство транзитивности состоит в том, что из ab и b>c следует, что a>c . Это свойство также воспринимается достаточно естественно: если первый объект меньше (больше) второго, а второй меньше (больше) третьего, то понятно, что первый объект подавно меньше (больше) третьего.

В свою очередь отношениям «меньше или равно» и «больше или равно» присущи следующие свойства:

  • рефлексивности: имеют место неравенства a≤a и a≥a (так как они включают в себя случай a=a );
  • антисимметричности: если a≤b , то b≥a , и если a≥b , то b≤a ;
  • транзитивности: из a≤b и b≤c следует, что a≤c , а из a≥b и b≥c следует, что a≥c .

Двойные, тройные неравенства и т.д.

Свойство транзитивности, которое мы затронули в предыдущем пункте, позволяет составлять так называемые двойные, тройные и т.д. неравенства, представляющие собой цепочки неравенств. Для примера приведем двойное неравенство a

Теперь разберем, как понимать такие записи. Их следует трактовать в согласии со смыслом содержащихся в них знаков. Например, двойное неравенство a

В заключение заметим, что иногда удобно использовать записи в виде цепочек, содержащих одновременно как знаки равно, не равно, так и знаки строгих и нестрогих неравенств. Например, x=2

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.

На этом уроке мы начнём изучать неравенства и их свойства. Мы рассмотрим простейшие неравенства - линейные и методы решения систем и совокупностей неравенств.

Мы часто сравниваем те или иные объекты по их числовым характеристикам: товары по их ценам, людей по их росту или возрасту, смартфоны по их диагонали или результаты команд по количеству забитых мячей в матче.

Соотношения вида или называют неравенствами . Ведь в них записано, что числа не равны, а больше или меньше друг друга.

Чтобы сравнивать натуральные числа в десятичной записи, мы упорядочили цифры: , а дальше чаще всего использовали преимущества десятичной записи: начинали сравнивать цифры чисел с крайних левых разрядов до первого несоответствия.

Но этот способ не всегда удобен.

Проще всего сравнивать положительные числа, т.к. они обозначают количества. Действительно, если число можно эквивалентно представить в виде суммы числа с каким-то другим числом , то больше : .

Эквивалентная запись: .

Это определение можно расширить не только на положительные числа, но и на любые два числа: .

Число больше числа (записывается как или ), если число является положительным. Соответственно, если число отрицательно, то .

Например, сравним две дроби: и . Сразу так и не скажешь, какая из них больше. Поэтому обратимся к определению и рассмотрим разность :

Получили отрицательное число, значит, .

На числовой оси большее число всегда будет располагаться правее, меньшее - левее (Рис. 1).

Рис. 1. На числовой оси большее число располагается правее, меньшее - левее

Зачем нужны такие формальные определения? Одно дело - наше понимание, а другое - техника. Если сформулировать строгий алгоритм сравнения чисел, то его можно поручить компьютеру. В этом есть плюс - такой подход избавляет нас от выполнения рутинных операций. Но есть и минус - компьютер точно следует заданному алгоритму. Если компьютеру поставлена задача: поезд должен отправиться со станции в , то, даже если вы окажетесь на платформе в , на этот поезд вы уже не успеете. Поэтому алгоритмы, которые мы задаём компьютеру для выполнения различных вычислений или решения задач, должны быть очень точными и максимально формализованными.

Как и в случае равенств, с неравенствами можно совершать некоторые действия и получать эквивалентные неравенства.

Рассмотрим некоторые из них.

1. Если , то для любого числа . Т.е. можно прибавлять или вычитать одно и то же число к обеим частям неравенства.

У нас уже есть хороший образ - весы. Если одна из чашек весов перевешивала, то, сколько бы мы ни добавляли (или не забирали) к обеим чашам, эта ситуация не изменится (Рис. 2).

Рис. 2. Если чаши весов не уравновешены, то после добавления (убавления) к ним одинакового количества гирь они останутся в таком же неуравновешенном положении

Это действие можно сформулировать по-другому: можно переносить слагаемые из одной части неравенства в другую, изменяя их знак на противоположный: .

2. Если , то и для любого положительного . Т.е. обе части неравенства можно умножать или делить на положительное число и его знак не изменится.

Для понимания этого свойства можно опять воспользоваться аналогией с весами: если, к примеру, левая чаша перевешивала, то, если возьмём две левые чаши и две правые, перевес точно сохранится. Та же ситуация для , чаш и т.д. Даже если возьмём половины каждой из чаш, ситуация тоже не изменится (Рис. 3).

Рис. 3. Если чаши весов не уравновешены, то, после того как забрать половину каждой из них, они останутся в таком же неуравновешенном положении

Если же умножить или разделить обе части неравенства на отрицательное число, то знак неравенства изменится на противоположный. С аналогией для этой операции чуть сложнее - отрицательных количеств нет. Здесь поможет тот факт, что у отрицательных чисел всё наоборот (чем больше модуль числа, тем меньше само число): .

Для чисел разных знаков ещё легче: . Т.е., умножая на , мы должны изменить знак неравенства на противоположный.

Что касается умножения на отрицательное число , то можно выполнить эквивалентную операцию из двух частей: сначала умножить на противоположное положительное число - как мы уже знаем, знак неравенства не изменится: .

Подробнее о сложении и умножении

В первом свойстве мы записали: , но при этом сказали, что можно не только прибавлять, но и вычитать. Почему? Потому что вычитание числа - это то же самое, что и прибавление противоположного числа: . Именно поэтому мы говорим не только о сложении, но и о вычитании.

Аналогично и со вторым свойством: деление - это умножение на обратное число: . Поэтому во втором свойстве мы говорим не только об умножении на число, но и о делении.

3. Для положительных чисел и , если , то .

Это свойство мы хорошо знаем: если мы торт делим на человек, то, чем больше , тем меньше достанется каждому. Например: , поэтому (действительно, четвёртая часть торта явно меньше третьей части того же торта) (Рис. 4).

Рис. 4. Четвёртая часть торта меньше третьей части того же торта

4. Если и , то .

Продолжая аналогию с весами: если на одних весах левая чаша перевешивает правую и на других - такая же ситуация, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, снова получим, что левая чаша перевешивает (Рис. 5).

Рис. 5. Если левые чаши двух весов перевешивают правые, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, получится, что левая чаша перевешивает

5. Для положительных , если и , то .

Здесь аналогия чуть более сложная, но тоже ясная: если левая чаша тяжелее правой и мы возьмём больше левых чаш, чем правых, то точно получим более массивную чашу (Рис. 6).

Рис. 6. Если левая чаша тяжелее правой, то если взять больше левых чаш, чем правых, то получится более массивная чаша

Последние два свойства интуитивно понятны: сложив или умножив числа побольше, мы в результате получим большее число.

Большинство из этих свойств можно строго доказать, используя различные алгебраические аксиомы и определения, но мы не будем этого делать. Для нас процесс доказательства представляет не такой интерес, как непосредственно полученный результат, который мы будем использовать на практике.

До сих пор мы говорили о неравенствах как о способе записи результата сравнения двух чисел: или . Но неравенства можно использовать и для записи различной информации об ограничениях для того или иного объекта. В жизни мы часто используем такие ограничения для описания, например: Россия - это миллионы людей от Калининграда до Владивостока; в лифте можно перевозить не больше кг, а в пакет - класть не больше кг. Ограничения могут быть использованы и для классификации объектов. Например, в зависимости от возраста выделяют различные категории населения - дети, подростки, молодёжь и т.д.

Во всех рассмотренных примерах можно выделить общую идею: некоторая величина ограничена сверху или снизу (или с обеих сторон сразу). Если - грузоподъёмность лифта, а - допустимая масса товаров, которые можно класть в пакет, то описанную выше информацию можно записать так: , и т.д.

В рассмотренных примерах мы были немного неточны. Формулировка «не больше» подразумевает, что в лифте можно перевозить ровно кг, а в пакет можно положить ровно кг. Поэтому правильнее было записать так: или . Естественно, так писать неудобно, поэтому придумали специальный знак: , который читается как «меньше или равно». Такие неравенства называются нестрогими (соответственно, неравенства со знаками - строгими ). Их используют тогда, когда переменная может быть не только строго больше или меньше, но может и равняться граничному значению.

Решением неравенства называются все такие значения переменной, при подстановке которых полученное числовое неравенство будет верным. Рассмотрим, например, неравенство: . Числа - решения этого неравенства, т.к. неравенства являются верными. А вот числа и не являются решениями, поскольку числовые неравенства и не являются верными. Решить неравенство , значит, найти все значения переменных, при которых неравенство будет верным.

Вернемся к неравенству . Его решения можно эквивалентно описать так: все действительные числа, которые больше . Понятно, что таких чисел бесконечное множество, как же в таком случае записать ответ? Обратимся к числовой оси: все числа, большие , расположены справа от . Заштрихуем эту область, тем самым показывая, что это и будет ответ к нашему неравенству. Чтобы показать, что число не является решением, его заключают в пустой круг, или, по-другому, выкалывают точку (Рис. 7).

Рис. 7. На числовой оси показано, что число не является решением (выколотая точка)

Если же неравенство нестрогое и выбранная точка является решением, то её заключают в закрашенный круг.

Рис. 8. На числовой оси показано, что число является решением (закрашенная точка)

Итоговый ответ удобно записывать с помощью промежутков . Промежуток записывается по следующим правилам:

Знак обозначает бесконечность, т.е. показывает, что число может принимать сколь угодно большое () или сколь угодно малое значение ().

Ответ к неравенству мы можем записать так: или просто: . Это означает, что неизвестная принадлежит указанному промежутку, т.е. может принимать любые значения из этого промежутка.

Если обе скобки промежутка круглые, как в нашем примере, то такой промежуток ещё называют интервалом .

Обычно решением неравенства является промежуток, но возможны и другие варианты, например, решением может быть множество, состоящее из одного или несколько чисел. Например, неравенство имеет только одно решение . Ведь при любых других значениях выражение будет положительным, а значит, соответствующее числовое неравенство выполняться не будет.

Неравенство может и не иметь решений. В этом случае ответ записывают как («Переменная принадлежит пустому множеству»). В том, что решением неравенства может быть пустое множество, нет ничего необычного. Ведь в реальной жизни ограничения также могут привести к тому, что не найдется ни одного элемента, удовлетворяющего требованиям. Например, людей с ростом выше метров и при этом весом до кг - точно нет. Множество таких людей не содержит ни одного элемента, или, как говорят, это пустое множество.

Неравенства могут использоваться не только для записи известной информации, но и, как математические модели, для решения различных задач. Пусть у вас есть рублей. Сколько мороженых по рублей вы можете купить на эти деньги?

Другой пример. У нас есть рублей и нам нужно купить мороженое на друзей. По какой цене мы можем выбрать мороженое для покупки?

В жизни каждый из нас умеет решать такие простые задачи в уме, но задача математики - разработать удобный инструмент, с помощью которого можно решить не одну конкретную задачу, а целый класс разных задач независимо от того, о чём идёт речь - количество порций мороженого, машин для перевозки грузов или рулонов обоев для комнаты.

Перепишем условие первой задачи про мороженое на математическом языке: одна порция стоит рублей, количество порций, которое мы можем купить, нам неизвестно, обозначим как . Тогда общая стоимость нашей покупки: рублей. И, по условию, эта сумма не должна превышать рублей. Избавляясь от наименований, получаем математическую модель: .

Аналогично для второй задачи (где - стоимость порции мороженого): . Конструкции , - простейшие примеры неравенств с переменной, или линейных неравенств.

Линейными называются неравенства вида , а также те, которые можно привести к такому виду эквивалентными преобразованиями. Например: ; ; .

Ничего нового в таком определении для нас нет: отличие линейных неравенств от линейных уравнений только в замене знака равенства на знак неравенства. Название также связано с линейной функцией , которая фигурирует в левой части неравенства (Рис. 9).

Рис. 9. График линейной функции

Соответственно, алгоритм решения линейных неравенств почти такой же, как и алгоритм решения линейных уравнений:

Разберём несколько примеров.

Пример 1. Решить линейное неравенство: .

Решение

Перенесём слагаемое с неизвестной из правой части неравенства в левую: .

Делим обе части на отрицательное число , знак неравенства меняется на противоположный: . Сделаем рисунок на оси (Рис. 10).

Рис. 10. Иллюстрация к примеру 1

Левого края у промежутка нет, поэтому пишем . Левый край промежутка , неравенство строгое, поэтому запишем с круглой скобкой. Получаем интервал: .

Пример 2. Решить линейное неравенство:

Решение

Раскроем скобки в левой и правой частях неравенства: .

Приведём подобные слагаемые: .

Сделаем рисунок на оси (Рис. 11).

Рис. 11. Иллюстрация к примеру 2

Получаем промежуток: .

Что делать, если после приведения подобных слагаемых пропала неизвестная

Пример 1. Решить линейное неравенство: .

Решение

Раскроем скобки: .

Перенесём в левую часть все слагаемые с переменной, а в правую - без переменной:

Приведём подобные слагаемые: .

Получаем: .

Неизвестной нет, что же делать? На самом деле снова ничего нового. Вспомните, что мы делали в таких случаях для линейных уравнений: если получилось верное равенство, то решение - любое действительное число, если получилось неверное равенство, то решений у уравнения - нет.

Так же поступаем и здесь. Если получившееся числовое неравенство верно, значит, неизвестная может принимать любые значения: ( - множество всех действительных чисел). Но числовой оси это можно изобразить следующим образом (Рис. 1):

Рис. 1. Неизвестная может принимать любые значения

А с помощью интервала записать так: .

Если же числовое неравенство получилось неверным, то исходное неравенство не имеет решений: .

В нашем случае неравенство неверно, поэтому ответ: .

В различных задачах нам может встретиться не одно, а сразу несколько условий или ограничений. Например, чтобы решить транспортную задачу, нужно учесть количество машин, время в пути, грузоподъёмность и прочее. Каждое из условий на математическом языке будет описываться своим неравенством. При этом возможны два варианта:

1. Все условия выполняются одновременно. Такой случай описывается системой неравенств . При записи они объединяются фигурной скобкой (можно прочитать её как союз И): .

2. Должно выполняться хотя бы одно из условий. Это описывается совокупностью неравенств (можно прочитать её как союз ИЛИ): .

Системы и совокупности неравенств могут содержать несколько переменных, их количество и сложность могут быть любыми. Но мы будем подробно изучать самый простой случай: системы и совокупности неравенств с одной переменной.

Как их решать? Нужно по отдельности решить каждое из неравенств, а дальше всё зависит от того, система перед нами или совокупность. Если это система , должны выполняться все условия. Если Шерлок Холмс определил, что преступник был блондином и имел размер ноги, то среди подозреваемых должны остаться только блондины с размером ноги. Т.е. нам подойдут только те значения, которые соответствуют и одному, и второму, и, если есть, третьему, и другим условиям. Они находятся на пересечении всех полученных множеств. Если использовать числовую ось, то - на пересечении всех заштрихованных частей оси (Рис. 12).

Рис. 12. Решение системы - пересечение всех заштрихованных частей оси

Если это совокупность , то нам подойдут все значения, которые являются решениями хотя бы одного неравенства. Если Шерлок Холмс определил, что преступником мог быть или блондин, или человек с размером ноги, то среди подозреваемых должны оказаться как все блондины (независимо от размера обуви), так и все люди с размером ноги (независимо от цвета волос). Т.е. решением совокупности неравенств будет объединение множеств их решений. Если использовать числовую ось, то - объединение всех заштрихованных частей оси (Рис. 13).

Рис. 13. Решение совокупности - объединение всех заштрихованных частей оси

Подробнее о пересечении и объединении вы можете узнать ниже.

Пересечение и объединение множеств

Термины «пересечение» и «объединение» относятся к понятию множества. Множество - набор элементов, отвечающим некоторым критериям. Примеров множеств вы можете придумать сколько угодно: множество одноклассников, множество футболистов сборной России, множество машин в соседнем дворе и т.д.

Вы уже знакомы с числовыми множествами: множеством натуральных чисел , целых , рациональных , действительных чисел . Есть и пустые множества , они не содержат элементов. Решения неравенств - это тоже множества чисел.

Пересечением двух множеств и называется такое множество , которое содержит все элементы, принадлежащие одновременно и множеству , и множеству (Рис. 1).

Рис. 1. Пересечение множеств и

Например, пересечение множества всех женщин и множества президентов всех стран будут все женщины-президенты.

Объединением двух множеств и называется такое множество , которое содержит все элементы, которые принадлежат хотя бы одному из множеств или (Рис. 2).

Рис. 2. Объединение множеств и

Например, объединением множества футболистов «Зенита» в сборной России и футболистов «Спартака» в сборной России будут все футболисты «Зенита» и «Спартака», которые играют за сборную. Кстати, пересечение этих множеств будет пустым множеством (игрок не может одновременно играть за два клуба).

С объединением и пересечением числовых множеств вы уже сталкивались, когда искали НОК и НОД двух чисел. Если и - это множества, состоящие из простых множителей, полученных при разложении чисел, то НОД получается из пересечения этих множеств, а НОК - из объединения. Пример:

Пример 3. Решить систему неравенств: .

Решение

Решим по отдельности неравенства. В первом неравенстве перенесём слагаемое без переменной в правую часть с противоположным знаком: .

Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Во втором неравенстве перенесём в левую часть слагаемое с переменной, а в правую - без переменной: . Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Изобразим решения отдельных неравенств на числовой оси. По условию, у нас система неравенств, поэтому ищем пересечение решений (Рис. 14).

Рис. 14. Иллюстрация к примеру 3

По сути первая часть решения систем и совокупностей неравенств с одной переменной сводится к решению отдельных линейных неравенств. В этом вы можете попрактиковаться самостоятельно (например, с помощью наших тестов и тренажёров), а мы подробнее остановимся на нахождении объединений и пересечений множеств решений.

Пример 4. Пусть было получено следующее решение отдельных уравнений системы:

Решение

Заштрихуем на оси область, соответствующую решению первого уравнения (Рис. 15); решение второго уравнения - пустое множество, ему на оси ничего не соответствует.

Рис. 15. Иллюстрация к примеру 4

Это система, поэтому нужно искать пересечение решений. Но их нет. Значит, ответом к системе будем также пустое множество: .

Пример 5. Еще пример: .

Решение

Отличие в том, что это уже совокупность неравенств. Поэтому нужно выбрать область на оси, которая соответствует решению хотя бы одного из уравнений. Получим ответ: .

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Неравенство - это запись, в которой числа, переменные или выражения соединены знаком <, >, ⩽ или ⩾. То есть неравенством можно назвать сравнение чисел, переменных или выражений. Знаки < , > , и называются знаками неравенства .

Виды неравенств и как они читаются:

Как видно из примеров, все неравенства состоят из двух частей: левой и правой, соединённых одним из знаков неравенства. В зависимости от знака, соединяющего части неравенств, их делят на строгие и нестрогие.

Строгие неравенства - неравенства, у которых части соединены знаком < или >. Нестрогие неравенства - неравенства, у которых части соединены знаком ⩽ или ⩾.

Рассмотрим основные правила сравнения в алгебре:

  • Любое положительное число больше нуля.
  • Любое отрицательное число меньше нуля.
  • Из двух отрицательных чисел больше то, у которого абсолютное значение меньше. Например, -1 > -7.
  • a и b положительна:

    a - b > 0,

    То a больше b (a > b ).

  • Если разность двух неравных чисел a и b отрицательна:

    a - b < 0,

    То a меньше b (a < b ).

  • Если число больше нуля, то оно положительное:

    a > 0, значит a - положительное число.

  • Если число меньше нуля, то оно отрицательное:

    a < 0, значит a - отрицательное число.

Равносильные неравенства - неравенства, являющиеся следствием другого неравенства. Например, если a меньше b , то b больше a :

a < b и b > a - равносильные неравенства

Свойства неравенств

  1. Если к обеим частям неравенства прибавить одно и то же число или вычесть из обеих частей одно и то же число, то получится равносильное неравенство, то есть,

    если a > b , то a + c > b + c и a - c > b - c

    Из этого следует, что можно переносить члены неравенства из одной части в другую с противоположным знаком. Например, прибавив к обеим частям неравенства a - b > c - d по d , получим:

    a - b > c - d

    a - b + d > c - d + d

    a - b + d > c

  2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное неравенство, то есть,
  3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число, то получится неравенство противоположное данному, то есть Следовательно, при умножении или делении обеих частей неравенства на отрицательное число надо изменить знак неравенства на противоположный.

    Это свойство можно использовать для изменения знаков у всех членов неравенства, умножая обе его части на -1 и изменяя знак неравенства на противоположный:

    -a + b > -c

    (-a + b ) · -1 < (-c ) · -1

    a - b < c

    Неравенство -a + b > -c равносильно неравенству a - b < c

Определение и основные свойства неравенств.

Определения:

Неравенствами называют выражения вида a b) ,a>b (a≥ b) ,

где a и b могут быть числами или функциями.

Символы <(≤ ) , >( ≥ ) называются знаками неравенства и читаются соответственно:

меньше(меньше или равно) ,больше(больше или равно).

Неравенства, которые записываются с помощью знаков > и < ,называются строгими ,

а неравенства, в записи которых участвуют знаки ≥ и ≤,- нестрогими .

Неравенства вида aназываются двойными неравенствами

и читаются соответственно:x больше a ,но меньше b (x большеили равно a ,но меньше или равно b ).

Различают два вида неравенств: числовые (2>0 ,7 ;½ <6 ) и неравенства с переменной (5 x-40>0 ; x²-2x<0 ) .

Свойства числовых неравенств :

Числовые промежутки

Неравенство

Числовой

промежуток

Название

промежутка

Геометрическая

интерпретация

замкнутый промежуток(отрезок) с концами a и b ,a

открытый промежуток (интервал) с концами a и b ,a
полуоткрытые промежутки (полуинтервалы) концами a и b ,a

бесконечные промежутки (лучи)

бесконечные промежутки (открытые лучи)

бесконечный промежуток (числовая прямая)

О сновные определения и свойства.

Определения:

Решением неравенства с одной переменной называется значение переменной,

кот орое обращает его в верное числовое неравенство.

Решить неравенство - значит найти все его решения или доказать, что решений нет.

Неравенства, имеющие одни и те же решения, называются равносильными .

Неравенства, не имеющие решений, также считают равносильными.

При решении неравенств используются следующие свойства :

1) Если из одной части неравенства перенести в

другую слагаемое с противоположным знаком,

2) Если обе части неравенства умножить или

разделить на одно и то же положительное число,

то получится равносильное ему неравенство.

3) Если обе части неравенства умножить или

разделить на одно и то же отрицательное число,

изменив при этом знак неравенства на противоположный,

то получится равносильное ему неравенство.

Многие неравенства в процессе преобразований сводятся к линейным неравенствам .

Н еравенства вида ах>b (ах , где а и b - некоторые числа,

Называют линейными неравенствами с одной переменной.

Если a>0 ,то неравенство ax>b равносильно неравенству

и множество решений неравенства есть промежуток

Если a<0 ,то неравенство ax>b равносильно неравенству

и множество решений неравенства есть промежуток

неравенство примет вид 0∙ x>b , т.е. оно не имеет решений , если b≥0 ,

и верно при любых x ,если b<0 .

Аналитический способ решения неравенств с одной переменной.

Алгоритм решения неравенства с одной переменной

  • Преобразовать обе части неравенства.
  • Привести подобные слагаемые.
  • Привести неравенства к простейшему виду, на основании свойств неравенств.
  • Записать ответ.

Приведем примеры решения неравенств .

Пример 1. Решить неравенство 3x≤ 15.

Решение:

О бе части неравенства

р азделим на положительное число 3 (свойство 2 ) : x ≤ 5.

Множество решений неравенства представляет собой числовой промежуток (-∞;5] .

Ответ: (- ∞;5]

Пример 2 . Решить неравенство -10 x≥34 .

Решение:

О бе части неравенства р азделим на отрицательное число -10 ,

при этом знак неравенства изменим на противоположный (свойство 3 ) : x ≤ - 3,4.

Множество решений неравенства представляет собой промежуток (-∞;-3,4] .

Ответ : (-∞;-3,4] .

Пример 3. Решить неравенство 18+6x>0.

Решение:

Перенесем слагаемое 18 с противоположным знаком в левую часть неравенства (свойство 1): 6x>-18.

Разделим обе части на 6 (свойство 2 ) :

x>-3.

Множество решений неравенства представляет собой промежуток (-3;+∞ ).

Ответ: (-3;+∞ ).

Пример 4. Решить неравенство 3 (x-2)-4(x+2)<2(x-3)-2.

Решение:

Раскроем скобки : 3x-6-4x-8<2x-6-2 .

Перенесем члены,содержащие неизвестное,в левую часть,

а члены не содержащие неизвестное, в правую часть (свойство 1 ) :

3x-4x-2x<6+8-6-2.

Приведем подобные члены: -3 x<6.

Разделим обе части на -3 (свойство 3 ) :

x>-2.

Множество решений неравенства представляет собой промежуток (-2;+∞ ).

Ответ: (-2;+∞ ).

Пример 5 . Решить неравенство

Решение:

Умножим обе части неравенства на наименьший общий знаменатель дробей,

входящих в неравенство, т. е. на 6 (свойство 2 ) .

Получим:

,

2x-3x≤12.

Отсюда, - x≤12,x≥-12 .

Ответ: [ -12;+∞ ).

Пример 6 . Решить неравенство 3(2-x)-2>5-3x.

Решение:

6-3x-2>5-3x, 4-3x>5-3x,-3x+3x>5-4.

Приведем подобные члены в левой части неравенства и запишем результат в виде 0 x>1.

Полученное неравенство не имеет решений, так как при любом значении x

оно обращается в числовое неравенство 0 < 1, не являющееся верным.

Значит, не имеет решений и равносильное ему заданное неравенство.

Ответ: решений нет.

Пример 7 . Решить неравенство 2(x+1)+5>3-(1-2x) .

Решение:

Упростим неравенство,раскрыв скобки:

2x+2+5>3-1+2x, 2x+7>2+2x,2x-2x>2-7, 0∙ x>-5 .

Полученное неравенство является верным при любом значении x,

так как левая часть при любом x равна нулю,а 0>-5.

Множеством решения неравенства является промежуток (-∞;+∞ ).

Ответ: (-∞;+∞ ).

Пример 8 . При каких значениях x имеет смысл выражение:

b)

Решение:

а)По определению арифметического квадратного корня

должно выполнятся следующее неравенство 5x-3 ≥0.

Решая, получаем 5x≥3, x≥0,6.

Итак, данное выражение имеет смысл при всех x из промежутка }

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то