Сила взрыва водородной бомбы. Уничтожить мир? Термоядерная бомба: история и мифы. Чем отличается водородная бомба от ядерной

Царь-бомба — это прозвище водородной бомбы АН602, испытания которой были проведены в Советском Союзе в 1961 году. Эта бомба была самой мощной из всех когда-либо взорванных. Ее мощность была такова, что вспышка от взрыва была видна за 1000 км, а ядерный гриб поднялся почти на 70 км.

Царь-бомба была водородной бомбой. Ее создали в лаборатории Курчатова. Мощность бомбы была такой, что ее хватило бы на 3800 Хиросим.

Давайте вспомним историю ее создания …

В начале «атомного века» Соединённые Штаты и Советский Союз вступили в гонку не только по количеству атомных бомб, но и по их мощности.

СССР, который обзавёлся атомным оружием позже конкурента, стремился выравнять положение за счёт создания более совершенных и более мощных устройств.

Разработка термоядерного устройства по кодовым названием «Иван» была начата в середине 1950-х годов группой физиков под руководством академика Курчатова. В группу, занимавшуюся данным проектом, входили Андрей Сахаров, Виктор Адамский, Юрий Бабаев, Юрий Трунов и Юрий Смирнов.

В ходе исследовательских работ учёные также пытались нащупать пределы максимальной мощности термоядерного взрывного устройства.

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании.

Проектные изыскания длились в течение нескольких лет, а финальный этап разработки «изделия 602» пришёлся на 1961 год и занял 112 дней.

Бомба АН602 имела трёхступенчатую конструкцию: ядерный заряд первой ступени (расчётный вклад в мощность взрыва - 1,5 мегатонны) запускал термоядерную реакцию во второй ступени (вклад в мощность взрыва - 50 мегатонн), а она, в свою очередь, инициировала так называемую ядерную «реакцию Джекилла-Хайда» (деление ядер в блоках урана-238 под действием быстрых нейтронов, образующихся в результате реакции термоядерного синтеза) в третьей ступени (ещё 50 мегатонн мощности), так что общая расчётная мощность АН602 составляла 101,5 мегатонн.

Однако первоначальный вариант был отклонён, поскольку в таком виде взрыв бомбы вызвал бы чрезвычайно мощное радиационное загрязнение (которое, однако, по расчётам всё равно серьёзно уступало бы тому, которое было вызвано куда менее мощными американскими устройствами).
В итоге было решено не использовать «реакцию Джекилла-Хайда» в третьей ступени бомбы и заменить урановые компоненты на их свинцовый эквивалент. Это уменьшало расчётную общую мощность взрыва почти вдвое (до 51,5 мегатонн).

Ещё одним ограничением для разработчиков были возможности авиатехники. Первый вариант бомбы весом в 40 тонн был отвергнут авиаконструкторами из КБ Туполева - самолёт-носитель не смог бы доставить подобный груз до цели.

В итоге стороны достигли компромисса - атомщики уменьшили вес бомбы вдвое, а авиационные конструкторы готовили для неё специальную модификацию бомбардировщика Ту-95 - Ту-95В.

Оказалось, что поместить заряд в бомболюке не удастся ни при каких условиях, поэтому донести АН602 до цели Ту-95В должен был на специальной внешней подвеске.

Фактически самолёт-носитель был готов в 1959 году, однако физикам-атомщикам было дано указание не форсировать работы по бомбе - как раз в этот момент в мире наметились признаки снижения напряжения в международных отношениях.

В начале 1961 года, однако, обстановка вновь обострилась, и проект реанимировали.

Окончательный вес бомбы вместе с парашютной системой составил 26,5 тонн. У изделия оказалось сразу несколько названий - «Большой Иван», «Царь-Бомба» и «Кузькина мать». Последнее приклеилось к бомбе после выступление советского лидера Никиты Хрущёва перед американцами, в котором он посулил им показать «кузькину мать».

О том, что Советский Союз планирует в ближайшее время испытать сверхмощный термоядерный заряд, в 1961 году Хрущёв вполне открыто говорил иностранным дипломатам. 17 октября 1961 года о предстоящих испытаниях советский лидер заявил в докладе на XXII съезде партии.

Местом испытаний был определён полигон «Сухой Нос» на Новой Земле. Подготовка к взрыву была завершена в последних числах октября 1961 года.

Самолёт-носитель Ту-95В базировался на аэродроме в Ваенге. Здесь же в специальном помещении производилась окончательная подготовка к испытаниям.

Утром 30 октября 1961 года экипаж лётчика Андрея Дурновцева получил приказ вылететь в район полигона и произвести сброс бомбы.

Взлетев с аэродрома в Ваенге, Ту-95В через два часа достиг расчётной точки. Бомба на парашютной системе была сброшена с высоты 10 500 метров, после чего лётчики сразу стали уводить машину из опасного района.

В 11:33 по московскому времени на высоте 4 км над целью был произведён взрыв.

Мощность взрыва заметно превысила расчётную (51,5 мегатонн) и составила от 57 до 58,6 мегатонн в тротиловом эквиваленте.

Принцип действия:

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

Свидетели испытания говорят, что ничего подобного в своей жизни им более наблюдать не приходилось. Ядерный гриб взрыва поднялся на высоту 67 километров, световое излучение потенциально могло вызывать ожоги третьей степени на расстоянии до 100 километров.

Наблюдатели сообщали, что в эпицентре взрыва скалы приняли удивительно ровную форму, а земля превратилась в некое подобие военного плаца. Полное уничтожение было достигнуто на площади, равной территории Парижа.

Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение около 40 минут. Отсутствие радиосвязи убедило учёных - испытания прошли как нельзя лучше. Ударная волна, возникшая в результате взрыва «Царь-бомбы», трижды обогнула земной шар. Звуковая волна, порождённая взрывом, докатилась до острова Диксон на расстоянии около 800 километров.

Несмотря на сильную облачность, свидетели видели взрыв даже на расстоянии тысячи километров и могли его описать.

Радиоактивное заражение от взрыва оказалось минимальным, как и планировали разработчики, - более 97 % мощности взрыва давала практически не создающая радиоактивного загрязнения реакция термоядерного синтеза.

Это позволило учёным приступить к исследованию результатов испытаний на опытном поле уже через два часа после взрыва.

Взрыв «Царь-бомбы» действительно произвёл впечатление на весь мир. Она оказалась мощнее самой мощной американской бомбы в четыре раза.

Существовала теоретическая возможность создания ещё более мощных зарядов, однако от реализации таких проектов было решено отказаться.

Как ни странно, главными скептиками оказались военные. С их точки зрения, практического смысла подобное оружие не имело. Как прикажете его доставлять в «логово врага»? Ракеты у СССР уже были, но долететь до Америки с таким грузом им было не под силу.

Стратегические бомбардировщики также были не в состоянии долететь до США с такой «поклажей». К тому же они становились лёгкой мишенью для средств ПВО.

Учёные-атомщики оказались куда большими энтузиастами. Выдвигались планы размещения у берегов США нескольких сверхбомб мощностью в 200–500 мегатонн, взрыв которых должен был вызвать гигантское цунами, которое смыло бы Америку в прямом смысле слова.

Академик Андрей Сахаров, будущий правозащитник и лауреат Нобелевской премии мира, выдвинул другой план. «Носителем может явиться большая торпеда, запускаемая с подводной лодки. Я фантазировал, что можно разработать для такой торпеды прямоточный водо-паровой атомный реактивный двигатель. Целью атаки с расстояния нескольких сот километров должны стать порты противника. Война на море проиграна, если уничтожены порты, - в этом нас заверяют моряки. Корпус такой торпеды может быть очень прочным, ей не будут страшны мины и сети заграждения. Конечно, разрушение портов - как надводным взрывом „выскочившей“ из воды торпеды со 100-мегатонным зарядом, так и подводным взрывом - неизбежно сопряжено с очень большими человеческими жертвами», - писал учёный в своих воспоминаниях.

О своей идее Сахаров рассказал вице-адмиралу Петру Фомину. Бывалый моряк, возглавлявший «атомный отдел» при Главкоме ВМФ СССР, пришёл в ужас от замысла учёного, назвав проект «людоедским». По словам Сахарова, он устыдился и более никогда к данной идее не возвращался.

Учёные и военные за успешное проведение испытаний «Царь-бомбы» получили щедрые награды, но сама идея сверхмощных термоядерных зарядов стала уходить в прошлое.

Конструкторы ядерного оружия сосредоточились на вещах менее эффектных, но куда более эффективных.

А взрыв «Царь-бомбы» и по сей день остаётся самым мощным из тех, что когда-либо были произведены человечеством.

Царь-бомба в цифрах:

  • Вес: 27 тонн
  • Длина: 8 метров
  • Диаметр: 2 метра
  • Мощность: 55 мегатонн в тротиловом эквиваленте
  • Высота ядерного гриба: 67 км
  • Диаметр основания гриба: 40 км
  • Диаметр огненного шара: 4.6 км
  • Расстояние, на котором взрыв вызывал ожоги кожи: 100 км
  • Расстояние видимости взрыва: 1000 км
  • Количество тротила, необходимое, чтобы сравняться по мощности с царь-бомбой: гигантский тротиловый куб со стороной 312 метров (высота Эйфелевой башни)

источники

http://www.aif.ru/society/history/1371856

http://www.aif.ru/dontknows/infographics/kak_deystvuet_vodorodnaya_bomba_i_kakovy_posledstviya_vzryva_infografika

http://lllolll.ru/tsar-bomb

И еще немного про немирный АТОМ: вот например , а вот . А было же еще и такое, что и были же еще Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Атомная бомба и водородная бомбы являются мощным оружием, которое использует ядерные реакции в качестве источника взрывной энергии. Ученые впервые разработали технологию ядерного оружия в ходе Второй мировой войны.

Атомные бомбы в реальной войне использовались только дважды, и оба раза Соединенными Штатами — против Японии в конце Второй мировой войны. После войны последовал период распространения ядерного оружия, а во время «холодной войны» Соединенные Штаты и Советский Союз боролись за господство в глобальной гонке ядерных вооружений.

Что такое водородная бомба, как она устроена, принцип действия термоядерного заряда и когда проведены первые испытания в СССР — написано ниже.

Как устроена атомная бомба

После того, как в Берлине, в 1938 году, германские физики Отто Хан, Лиза Мейтнер и Фриц Штрассман открыли явление ядерного деления, появилась возможность создания оружия необычайной мощности.

Когда атом радиоактивного материала расщепляется на более легкие атомы, происходит внезапное, мощное высвобождение энергии.

Открытие ядерного деления открыло возможность использования ядерных технологий, включая оружие.

Атомная бомба — оружие, которое получает свою взрывную энергию только от реакции деления.

Принцип действия водородной бомбы или термоядерного заряда, основаны на комбинации ядерного деления и ядерного синтеза.


Ядерный синтез — еще один тип реакции, в котором более легкие атомы объединяются для высвобождения энергии. Например, в результате реакции ядерного синтеза из атомов дейтерия и трития образуется атом гелия с высвобождением энергии.


Проект «Манхэттен»

Проект «Манхэттен» — кодовое название американского проекта по разработке практической атомной бомбы во время Второй мировой войны. Проект «Манхэттен» был начат как ответ усилиям немецких ученых, работавших над оружием, использующим ядерную технологию, с 1930-х годов.

28 декабря 1942 года президент Франклин Рузвельт санкционировал создание Манхэттенского проекта для объединения различных ученых и военных должностных лиц, работающих над ядерными исследованиями.

Большая часть работы была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж. Роберта Оппенгеймера.

16 июля 1945 года в отдаленном пустынном месте недалеко от Аламогордо, штат Нью-Мексико, первая атомная бомба, эквивалентная по мощности 20 килотоннам тротила, была успешно испытана. Взрыв водородной бомбы создал огромное грибоподобное облако высотой около 150 метров и открыл атомный век.


Единственное фото первого в мире атомного взрыва, сделанное американским физиком Джеком Аэби

Малыш и Толстяк

Ученые из Лос-Аламоса разработали два различных типа атомных бомб к 1945 году — проект на основе урана под названием «Малыш» и оружие на основе плутония под названием «Толстяк».


В то время как война в Европе закончилась в апреле, боевые действия в Тихоокеанском регионе продолжались между японскими войсками и войсками США.

В конце июля президент Гарри Трумэн призвал к капитуляции Японии в Потсдамской декларации. Декларация обещала «быстрое и полное уничтожение», если бы Япония не сдалась.

6 августа 1945 года Соединенные Штаты сбросили свою первую атомную бомбу с бомбардировщика B-29 под названием «Энола Гей» в японском городе Хиросима.

Взрыв «Малыша» соответствовал 13 килотоннам в тротиловом эквиваленте, сравнял с землёй пять квадратных миль города и мгновенно убил 80 000 человек. Десятки тысяч людей позже умрут от радиационного облучения.

Японцы продолжали сражаться, и Соединенные Штаты сбросили вторую атомную бомбу через три дня в городе Нагасаки. Взрыв «Толстяка» убил около 40 000 человек.


Ссылаясь на разрушительную силу «новой и самой жестокой бомбы», японский император Хирохито объявил о капитуляции своей страны 15 августа, закончив Вторую мировую войну.

Холодная Война

В послевоенные годы Соединенные Штаты были единственной страной с ядерным оружием. Сначала у СССР не хватало научных наработок и сырья для создания ядерных боеголовок.

Но, благодаря усилиям советских учёных, данным разведки и обнаруженным региональным источникам урана в Восточной Европе, 29 августа 1949 года СССР опробовал свою первую ядерную бомбу. Устройство водородной бомбы разработано академиком Сахаровым.

От атомного оружия к термоядерному

Соединенные Штаты ответили в 1950 запуском программы разработки более совершенного термоядерного оружия. Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза.

в этом году, США провели взрыв термоядерной бомбы мощностью 10 мегатонн в тротиловом эквиваленте

1955 год — СССР ответил своим первым термоядерным испытанием — всего-то лишь 1,6 мегатонн. Но главные успехи советского ВПК были впереди. Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой.

Испытание и первый врыв водородной бомбы в СССР

Утром 30 октября 1961 года советский бомбардировщик Ту-95 взлетел с аэродрома Оленя на Кольском полуострове на крайнем севере России.

Самолёт был специально измененной версией, появившейся в эксплуатации несколько лет назад — огромный четырехмоторный монстр, которому поручено носить советский ядерный арсенал.


Модифицированная версия ТУ-95 «Медведь», специально подготовленная для первого испытания водородной Царь-бомбы в СССР

Ту-95 нёс под собой огромную 58-мегатонную бомбу, устройство слишком большое, чтобы вместить внутри бомбового отсека самолета, где такие боеприпасы обычно перевозились. Бомба длиной 8 м имела диаметр около 2,6 м и весила более 27 тонн и в истории осталась с именем Царь-бомба — «Tsar Bomba».

Царь-бомба не была обычной ядерной бомбой. Это был результат напряженных усилий ученых СССР создать самое мощное ядерное оружие.

Туполев достиг своей целевой точки — Новая Земля, малонаселенный архипелаг в Баренцевом море, над замерзшими северными краями СССР.


Царь Бомба взорвалась в 11:32 по московскому времени. Результаты испытания водородной бомбы в СССР продемонстрировали весь букет поражающих факторов данного вида оружия. Прежде, чем ответить на вопрос, что мощнее, атомная или водородная бомба, следует знать, что мощность последней ихмеряется мегатоннами, а у атомных — килотоннами.

Световое излучение

В мгновение ока бомба создала огненный шар шириной в семь километров. Огненный шар пульсировал от силы собственной ударной волны. Вспышку можно было увидеть за тысячи километров — на Аляске, в Сибири и в Северной Европе.

Ударная волна

Последствия взрыва водородной бомбы Новой Земле были катастрофическими. В селе Северный, примерно в 55 км от Ground Zero, все дома были полностью разрушены. Сообщалось о том, что на советской территории в сотнях километров от зоны взрыва было повреждено все — разрушались дома, падали крыши, повреждались двери, разрушались окна.

Радиус действия водородной бомбы несколько сотен километров.

В зависимости от мощности заряда и поражающих факторов.

Датчики регистрировали взрывную волну, обернувшуюся вокруг Земли не один раз, не дважды, а три раза. Звуковую волну зафиксировали у острова Диксон на расстоянии около 800 км.

Электромагнитный импульс

Более часа была нарушена радиосвязь во всей Арктике.

Проникающая радиация

Получил некоторую дозу радиации экипаж.

Радиоактивное заражение местности

Взрыв Царь-бомбы на Новой Земле оказался на удивление «чистым». Испытатели прибыли в точку взрыва через два часа. Уровень радиации в этом месте не представлял большой опасности — не более 1 мР/час в радиусе всего 2-3 км. Причинами были особенности конструкции бомбы и выполнение взрыва на достаточно большом расстоянии от поверхности.

Тепловое излучение

Несмотря на то, что самолет-носитель, покрытый особой свето- и теплоотражающей краской, в момент подрыва бомбы ушёл на расстояние 45 км, он вернулся на базу со значительными термическими повреждениями обшивки. У незащищенного человека излучение вызвало бы ожоги третьей степени на расстоянии до 100 км.

Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км
Вспышка от взрыва Царь-бомбы, около 8 км в диаметре

Принцип действия водородной бомбы


Устройство водородной бомбы.

Первичная ступень выполняет роль включателя – триггера. Реакция деления плутония в триггере инициирует термоядерную реакцию синтеза во вторичной ступени, при которой температура внутри бомбы мгновенно достигает 300 миллионов °С. Происходит термоядерный взрыв. Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой.

Видео взрыва на ядерном полигоне

Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года.

65 лет назад Советский Союз взорвал свою первую термоядерную бомбу. Как устроено это оружие, что оно может и чего не может? 12 августа 1953-го в СССР взорвали первую «практичную» термоядерную бомбу. Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир.

Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее.

Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика.

Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году (проект неофициально назывался Super), но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу.

Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой».

К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба. Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. Хотя на энергию слияния ядер пришлось примерно 10% от общей энергии взрыва «Джорджа», «поджиг» урана-238 позволил поднять мощность взрыва вдвое выше обычного, до 225 килотонн.

За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Но на термоядерный синтез приходилось только 10% выделившейся энергии: испытания показали, что ядра водорода сжимаются недостаточно сильно.

Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте.

Тем не менее и это устройство было непригодно для использования в качестве боевого оружия.

Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь.

СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался. Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер.

Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. 12 августа РДС-6с испытали на Семипалатинском полигоне.

Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах. А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем.

Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором.

Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном.

Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей.

Техники работают с американской термоядерной боеголовкой W80

Чего не может термоядерная бомба

Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли.

Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф.

Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны.

Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана.

Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению.

Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения (радиус 35 км). Желтый круг - размер огненного шара (радиус 3,5 км).

Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации.

Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная.

66 миллионов лет назад столкновение с астероидом привело к исчезновению большинства наземных животных и растений. Мощность удара составила около 100 млн мегатонн - это в 10 тыс. раз больше суммарной мощности всех термоядерных арсеналов Земли. 790 тыс. лет назад с планетой столкнулся астероид, удар был мощностью в миллион мегатонн, но никаких следов хотя бы умеренного вымирания (включая наш род Homo) после этого не случилось. И жизнь в целом, и человек куда крепче, чем они кажутся.

Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор.


16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения - водородной бомбой.
За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире - на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.
Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.


Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.


Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров. Это фото сделано с расстояния в 160 км.
Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.


Сейсмическая волна, вызванная взрывом, обогнула земной шар трижды. Высота ядерного гриба достигла 67 километров в высоту, а диаметр его «шляпки» - 95 км. Звуковая волна достигла острова Диксон, располагающегося в 800 км от места испытаний.

Испытание водородной бомбы РДС-6С, 1953 год

Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия - ядерной бомбы . С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью.

Чем отличается водородная бомба от ядерной

Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения. Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран:

  • Ядерная (атомная) бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга.
  • Водородная (термоядерная) бомба. Энергия выделяется на основе синтеза ядер водорода (отсюда пошло и название). Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы.

Что мощнее: ядерная или водородная бомба?

Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз . Даже трудно представить, что было бы с Хиросимой (да и с самой Японией), если бы в брошенной на нее 20-ти килотонной бомбе был водород.

Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн:

  • Огненный шар : диаметр в 4,5 -5 километра в диаметре.
  • Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров.
  • Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.
  • Ядерный гриб : высота более 70 км в высоту, радиус шапки - около 50 км.

Атомные бомбы такой мощности еще ни разу не взрывали. Есть показатели бомбы сброшенной на Хиросиму в 1945 году, но своими размерами она значительно уступала водородному разряду описанному выше:

  • Огненный шар : диаметр около 300 метров.
  • Ядерный гриб : высота 12 км, радиус шапки - около 5 км.
  • Энергия : температура в центре взрыва достигала 3000С°.

Сейчас на вооружении ядерных держав стоят именно водородные бомбы . Кроме того, что они опережают по своим характеристикам своих «малых братьев », они значительно дешевле в производстве.

Принцип действия водородной бомбы

Разберем пошагово, этапы приведения в действие водородных бомб :

  1. Детонация заряда . Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде.
  2. Расщепление лития . Под воздействием нейтронов, литий расщепляется на гелий и тритий.
  3. Термоядерный синтез . Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв.

Принцип действия атомной бомбы

  1. Детонация заряда . В оболочке бомбы находится несколько изотопов (уран, плутоний и т.п.), которые поле детонации распадаются и захватывают нейтроны.
  2. Лавинообразный процесс . Разрушение одного атома, инициируют к распаду еще нескольких атомов. Идет цепной процесс, который влечет за собой к разрушению большого количества ядер.
  3. Ядерная реакция . За очень короткое времени все части бомбы образуют одно целое, и масса заряда начинает превышать критическую массу. Освобождается огромное количество энергии, после этого происходит взрыв.

Опасность ядерной войны

Еще в середине прошлого века опасность ядерной войны была маловероятна. В своем арсенале атомное оружие имели две страны - СССР и США. Лидеры двух супердержав прекрасно понимали опасность применения оружия массового поражения, и гонка вооружений велась, скорее всего, как «соревнующее» противостояние.

Безусловно напряженные моменты в отношении держав были, но здравый смысл всегда брал верх над амбициями.

Ситуация изменилась в конце 20 века. «Ядерной дубинкой» завладели не только развитые страны западной Европы, но и представители Азии.

Но, как вы наверное знаете, «ядерный клуб » состоит из 10 стран. Неофициально считается, что ядерные боеголовки имеет Израиль, и возможно Иран. Хотя последние, после наложения на них экономических санкций, отказались от развития ядерной программы.

После возникновения первой атомной бомбы, ученые СССР и США начали думать об оружии, которое бы не несло такие большие разрушения и заражения территорий противника, а целенаправленно действовало на организм человека. Возникла идея о создании нейтронной бомбы .

Принцип действия заключается во взаимодействии нейтронного потока с живой плотью и военной техникой . Образованные радиоактивнее изотопы моментально уничтожают человека, а танки, транспортеры и другое оружие на кратковременное время становятся источниками сильного излучения.

Нейтронная бомба взрывается на расстоянии 200 метров до уровня земли, и особенно эффективна при танковой атаке противника. Броня военной техники толщиной в 250 мм, способна уменьшить действия ядерной бомбы в разы, но бессильна перед гамма-излучениями нейтронной бомбы. Рассмотрим действия нейтронного снаряда мощностью до 1 килотонна на экипаж танка:

Как вы поняли, отличие водородной бомбы от атомной огромна. Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз .

При использовании термоядерной бомбы в 1 мегатонн, в радиусе 10 километров будет уничтожено все. Пострадают не только постройки и техника, но и все живое.

Об этом должны помнить главы ядерных стран, и использовать «ядерную» угрозу исключительно как сдерживающий инструмент, а не в качестве наступательного оружия.

Видео о различиях атомной и водородной бомбы

На этом видео будет подробно и пошагово описан принцип действия атомной бомбы, а также основные отличия от водородной:

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то