Типы химических связей органических веществах. Химические связи в органических соединениях. Типы реакций в органической химии

Атомы углерода в органических соединениях четырехвалентны и при этом могут находиться в трех разных состояниях гибридизации (табл. 22.1).

Таблица 22.1

Гибридизация атомов углерода

В образовании органических соединений особую роль играет способность атомов углерода соединяться между собой с образованием цепей, разветвленных цепей и циклов. Связи С-С значительно превосходят по прочности связи между другими одинаковыми атомами, чем и объясняется устойчивость углеродных структур:

Связанные между собой атомы углерода называют углеродным скелетом молекулы.

Пространственная конфигурация углеродных структур определяется гибридизацией атомов углерода. При ^-гибридизации всех атомов образуются зигзагообразные цепи. В случае образования цикла атомы углерода отклоняются от плоскостного расположения. Примеры представлены на схемах:


Если в зигзагообразной цепи присутствуют атомы углерода в состоянии 5р 2 -гибридизации, то возникают участки с плоскостным расположением атомов. При наличии атомов углерода в состоянии sp-гибридизации появляются линейные участки цепи.

У концевых атомов углерода, называемых первичными, остаются три валентности для присоединения других атомов и атомных групп: Н, ОН, Cl, NH 2 и т.д. Неконцевые атомы, связанные с двумя атомами углерода, называются вторичными. К ним присоединяются еще два атома. В углеродном цикле первичных атомов углерода нет. При наличии в цепи разветвления появляется третичный атом углерода. У него остается только одна валентность для присоединения других атомов. Наконец, в цепи атомов углерода могут возникать два ответвления у одного атома. Такой атом называется четвертичным ; он связан только с атомами углерода:

В молекуле с одним атомом углерода этот атом называется изолированным.

В зависимости от типа гибридизации углерод образует одинарные (а) и кратные - двойные (а + л) и тройные (а + 2л) связи. л-Связи могут возникать не только между атомами углерода, но и с атомами, присоединенными к углероду. Особой разновидностью химической связи является сопряженная двойная связь, возникающая при условии, что в углеродной цепи находятся более двух атомов в состоянии 5р 2 -гибридизации (см. рис. 6.26). Из рисунка следует, что неспаренные электроны на негибридных р-орбиталях могут образовать связи между любыми расположенными рядом атомами углерода, и это приводит к делокализации л-связи по всей цепочке $р 2 -атомов углерода. При химических реакциях наличие л-связи может проявляться то между атомами 1 и 2, то между атомами 2 и 3 и т.д.

Соединения, в которых имеются кратные связи и соответственно sp 2 - и sp-атомы углерода, называются ненасыщенными. Если это углеводороды, то содержание водорода в них меньше максимально возможного. Эти соединения проявляют повышенную реакционную способность, так как электронное облако л-связи сконцентрировано по двум сторонам от атомов С и поэтому довольно легко смещается от одного из двух атомов к другому под влиянием молекул реагентов.

В важнейших классах органических соединений кроме углерода и водорода могут содержаться кислород, азот, галогены, сера. Из этих элементов водород имеет меньшую электроотрицательность, чем углерод, а остальные - большую. Ковалентные связи углерода с ними в той или иной мере полярны, а на атомах имеются частичные электрические заряды ± 8:

Полярность связей влияет на реакционную способность соединений.

Атомам углерода присуща способность образовывать устойчивые связи сразу с несколькими разными атомами. Это приводит к множеству комбинаций, редко встречающихся в неорганической химии. Сравним углерод и алюминий. Последний образует четыре галогенида (AIF3, А1С1 3 , А1Вг 3 , АП 3) и гидрид А1Н 3 . Углерод же может дать много молекул с одновременным присутствием разных галогенов, а также водорода и других атомов углерода: СН 3 С1, СН 2 С1 2 , CH 2 ClBr, CHFClBr, СН 3 СНС1Вг и т.д. В этом также одна из причин разнообразия органических соединений.

В органической химии широко используются структурные формулы молекул. Структурные формулы можно изображать с разной степенью конкретизации и приближения к реальной структуре. Рассмотрим несколько разновидностей формул, изображающих молекулу пропана.


В многоатомных молекулах органических соединений возможно непрерывное вращение атомных групп вокруг осей, совпадающих с направлением одинарных связей С-С (для краткости говорят: вращение вокруг связи С-С). В самом простом случае этана С 2 Н 6 две группы СН 3 почти беспрепятственно вращаются одна относительно другой, как два колеса, свободно надетые на ось:


Молекулы с углеродными цепочками из четырех и более атомов в процессе внутреннего вращения изгибаются наподобие гусеницы, создавая всевозможные конформации (взаимные положения) атомов как в объеме, так и на плоскости. Цепочка из пяти атомов углерода имеет три плоские конформации:


Между тремя плоскими конформациями возникают объемные переходные конформации. Конформация «подкова» благоприятна для образования циклической структуры.

В органических молекулах различают отдельные части (фрагменты), отличающиеся по составу. К основной углеродной цепи или циклу могут быть присоединены ответвления, состоящие из углерода и водорода, называемые углеводородными радикалами. Простейшие радикалы, уже встречавшиеся в тексте, - это метил -СН 3 и этил -С 2 Н 5 . Четвертую связь радикала изображают черточкой или точкой (СН 3). Остальные элементы, кроме углерода и водорода, в молекулах органических соединений рассматривают как функциональные группы. Этот термин связан с тем, что химические реакции идут преимущественно с участием этих групп. В уже встречавшихся в тексте органических соединениях СН 3 СООП и C 2 H 5 NH 2 имеются функциональные группы -СООН (карбоксил) с кислотными свойствами и -NH 2 (аминогруппа) с основными свойствами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. Гибридизация атомных орбиталей углерода

Атомная орбиталь - это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако - это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.

Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона.

В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона. На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму.

Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) s р 3 -орбиталей:

Это - s р 3 -гибридизация.

Гибридизация - выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

ТЕТРАЭДР (углы = 109°28?

s р 2 -Гибридизация - смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные s р 2 -орбитали.

Эти s р 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°.

Негибридизованная р -орбиталь перпендикулярна к плоскости трех гибридных s р 2 -орбиталей (ориентирована вдоль осиz ).

Верхняя половина р -орбитали находится над плоскостью, нижняя половина - под плоскостью.

Тип s р 2 -гибридизации углерода бывает у соединений с двойной связью:

С=С, С=О, С=N.

Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.)

Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи(р )-связью.

s р -Гибридизация s - и одной р s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р у -связей. На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp -гибридных орбиталей, и двух р-связей.

2. Реакции электрофильного замещения атомов водорода в ряду бензола

1. Реакция галогенирования . Реакция галогенирования бензольного кольца осуществляется в присутствии катализаторов (чаще всего галогенидов железа или алюминия). Роль катализатора состоит в образовании сильнополяризованного комплекса с галогеном: ФОРМУЛА. Крайний слева атом хлора в комплексе становится электрононенасыщенным в результате поляризации связи Cl - Cl и способным к взаимодействию с нуклеофильными реагентами (в данном случае с бензолом):

д - комплекс отщепляет протон и превращается в продукт замещения (хлорбензол). Протон взаимодействует с - с регенерацией хлорида алюминия, образуя при этом хлористый водород:

В случае избытка галогена могут быть получены ди- и полигалогензамещенные, вплоть до полного замещения всех атомов водорода в бензоле.

Прямое йодирование в ароматическом ядре не удается провести вследствие малой реакционной способности йода. Прямое фторирование ароматических углеводородов протекает настолько энергично, что образуется сложная смесь продуктов, в которой целевые фторпроизводные содержатся в небольших количествах. В зависимости от условий проведения реакции галогенирования алкилбензолов галоген может замещать атомы водорода в бензольном кольце («на холоду» в присутствии кислот Льюиса) или в боковой цепи (при нагревании или на свету). В последнем случае реакция идет по свободнорадикальному механизму, подобно механизму замещения в алканах.

2. Реакция нитрования . Бензол медленно реагирует с концентрированной азотной кислотой. Скорость нитрования значительно возрастает, если реакцию нитрования проводить смесью концентрированных азотной и серной кислот (обычно в соотношении 1:2); эту смесь называют нитрующей.

Процесс происходит благодаря тому, что серная кислота, как более сильная, протонирует азотную кислоту, а образовавшаяся протонированная частица разлагается на воду и активный электрофильный реагент - нитроний-катион (катион нитрония).

Реакция нитрования бензола является реакцией электрофильного замещения и носит ионный характер. Вначале происходит образование р -комплекса в результате взаимодействия электронов бензольного кольца с положительно заряженной частицей нитроний-катиона.

Затем происходит переход р-комплекса в у-комплекс. При этом два р -электрона из шести идут на образование ковалентной связи С-NO2+. Оставшиеся четыре -электрона распределяются между пятью углеродными атомами бензольного кольца. Образуется у -комплекс в виде неустойчивого карбкатиона.

Неустойчивый у -комплекс под воздействием иона HSO4- теряет протон с формированием ароматической структуры нитробензола.

3. Реакция сульфирования . Для введения сульфогруппы в бензольное кольцо используют дымящуюся серную кислоту, т. е. содержащую избыток серного ангидрида (SO3). Электрофильной частицей является SO3. Механизм сульфирования ароматических соединений включает следующие стадии:

4. Реакция алкилирования по Фриделю-Крафтсу. Роль катализатора (обычно AlCl3) в этом процессе заключается в усилении поляризации галогеналкила с образованием положительно заряженной частицы, которая вступает в реакцию электрофильного замещения: ФОРМУЛА

3. Антрацен: строение и основные химические свойства

Антрацен - соединение, молекула которого состоит из трех ароматических колец, лежащих в одной плоскости. Его получают из антраценовой фракции каменноугольной смолы, кипящей при 300…350 °С. В лабораторной практике антрацен можно получить

а) по реакции Фриделя-Крафтса:

б) по реакции Фиттига:

В молекуле антрацена наиболее активны девятое и десятое положения, находящиеся под влиянием двух крайних колец. Антрацен легко вступает в реакции присоединения по этим положениям:

При действии окислителей антрацен легко образует антрахинон, который широко используется для синтеза красителей:

4. Сопряженные диены и способы их синтеза

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы СnH2n-2.

Две двойные связи в молекуле углеводорода могут быть расположены различным образом. Если они сосредоточены у одного углеродного атома, их называют кумулированными:-C=C=C- Если две двойные связи разделены одной простой связью, их называют сопряженными:-C=C - C=C- Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными: -C=C- (CH2)n - C=C-

5. Правила ориентации в бензольном кольце

При изучении реакций замещения в бензольном кольце было обнаружено, что если в нем уже содержится какой-либо заместитель, то в зависимости от его характера второй вступает в определенное положение. Таким образом, каждый заместитель в бензольном кольце проявляет определенный направляющий или ориентирующий эффект. На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. имеет ли действующий реагент электрофильную или нуклеофильную природу. Все заместители по характеру своего направляющего действия в делятся на две группы.

Заместители первого рода направляют вводимую группу в орто- и пара - положения:

К заместителям этого рода относятся следующие группы, расположенные в порядке убывания своей ориентирующей силы: N(CH3)2,NH2, OH, CH3 и другие алкилы, а также Cl, Br, I.

Заместители второго рода в реакциях электрофильного замещения направляют вводимые группы в мета-положение. К заместителям этого рода относятся следующие группы: - NO2,- C N, - SO3H, - CHO, - COOH.

6. Природа двойной связи и химические свойства этиленовых соединений

По современным представлениям две связи, соединяющие два ненасыщенных углеродных атома, не одинаковы: одна из них является у-связью, а другая р-связью. Последняя связь менее прочна и «разрывается» при реакциях присоединения.

О неравноценности двух связей в непредельных соединениях говорит, в частности, сравнение энергии образования простой и двойной связей. Энергия образования простой связи равна 340 кДж/моль (примерно 82 ккал/моль), а двойной - 615 кДж/моль (примерно 147 ккал/моль). Естественно, что для разрыва р -связи затрачивается меньше энергии, чем для разрыва у-связи. Таким образом, непрочность двойной связи объясняется тем, что одна из двух связей, образующих двойную связь, имеет иное электронное строение, чем обычные -связи, и обладает меньшей прочностью.

Названия олефинов обычно производят от названия соответствующих предельных углеводородов, но окончание -ан заменяется окончанием -илен. По международной номенклатуре вместо окончания -илен олефинам придают более краткое окончание -ен .

Изомерия олефинов зависит от изомерии цепи атомов углерода, т. е. от того, является ли цепь неразветвленной или разветвленной, и о тположения двойной связи в цепи. Существует еще и третья причина изомерии олефинов: различное расположение атомов и атомных групп в пространстве, т. е. стереоизомерия. Изомерия, зависящая от различного расположения в пространстве атомов и атомных групп, получила название пространственной изомерии , или стереоизомерии .

Геометрическая , или цис- и транс-изомерия , - это вид пространственной изомерии, зависящей от различного расположения атомов по отношению к плоскости двойной связи.

Для обозначения места двойной связи (а также ответвлений в цепи) согласно международной номенклатуре ИЮПАК нумеруют атомы углерода самой длинной цепи, начиная с того конца, к которому ближе стоит двойная связь. Таким образом, два изомера бутилена, обладающие неразветвленной цепью, будут называться бутен-1 и бутен-2:

1. Реакция гидрирования . Непредельные углеводороды легко присоединяют водород по двойной связи в присутствии катализаторов 67 (Pt, Pd, Ni). С Pt или Pd катализатором реакция идет при 20…100 °С, с Ni - при более высоких температурах:

2. Реакция галогенирования . Алкены при обычных условиях присоединяют галогены, особенно легко хлор и бром. В результате образуются дигалогенопроизводные алканов, содержащие галогены у соседних атомов углерода, так называемые вицинальные дигалогеналканы: CH

3CH=CH2 + Cl2> CH3CHClCH2Cl

3. Реакция присоединения галогенводородов. Гидрогалогенирование

4. Реакция гидратации алкенов. В обычных условиях алкены не реагируют с водой. Но в присутствии катализаторов при нагревании и давлении они присоединяют воду и образуют спирты:

5. Реакция присоединения серной кислоты. Взаимодействие алкенов с серной кислотой протекает аналогично присоединению галогенводородов. В результате образуются кислые эфиры серной кислоты:

6. Реакция алкилирования алкенов . Возможно каталитическое присоединение к алкенам алканов с третичным атомом углерода (катализаторы - H2SO4, HF, AlCl3 и BF3):

7. Реакция окисления алкенов . Алкены легко окисляются. В зависимости от условий окисления образуются различные продукты.При сжигании на воздухе алкены превращаются в диоксид углерода и воду: CH2=CH2 + 3O2> 2CO2 + 2H2O.

При взаимодействии алкенов с кислородом воздуха в присутствии серебряного катализатора образуются органические окиси:

Аналогично действуют на этилен гидропероксиды ацилов (реак- ция Прилежаева):

Одна из наиболее характерных реакций окисления - взаимодействие алкенов со слабощелочным раствором перманганата калия KMnO4 c образованием двухатомных спиртов - гликолей (реакция Вагнера). Реакция протекает на холоду следующим образом:

Концентрированнные растворы окислителей (перманганат калия в кислой среде, хромовая кислота, азотная кислота) разрывают молекулу алкена по двойной связи с образованием кетонов и кислот:

8. Реакция озонирования алкенов. Она также широко используется для установления структуры алкенов:

9. Реакции замещения. Алкены в определенных условиях способны и к реакциям замещения. Так, при высокотемпературном (500…550 °С) хлорировании алкенов происходит замещение водорода в аллильном положении:

10. Реакция полимеризации алкенов

СН2 = СН2 > (-СН2 - СН2 -)n получается полиэтилен

11. Реакция изомеризации . При высоких температурах или в присутствии катализаторов алкены способны изомеризоваться, при этом происходит либо изменение строения углеродного скелета, либо перемещение двойной связи:

7. Нафталин и его строение. Правило Хюккеля

Углеводороды нафталинового ряда являются основным ароматическим углеводородом каменноугольной смолы. Существует большое число полициклических ароматических соединений, в которых бензольные кольца имеют общие орторасположенные атомы углерода. Наиболее важные из них - нафталин, антрацен и фенантрен. В антрацене кольца соединены линейно, тогда как в фенантрене - под углом в отличие от молекулы бензола не все связи в ядре нафталина имеют одинаковую длину:

Правило Хюккеля : ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2) p-электронов (где n = 0,1,2...).

Таким образом, ароматическими будут плоские циклические сопряженные системы, содержащие 2, 6,10, 14 и т.д. p-электронов.

8. Алкины и sp-гибридизация атома углерода. Способы получения алкинов

Углеводороды ряда ацетилена имеют общую формулу

Сn H2n -2

Первый простейший углеводород этого ряда - ацетилен С2Н2. В структурной формуле ацетилена, как и у других углеводородов этогоряда, содержится тройная связь:

Н - С? С - Н.

s р -Гибридизация - это смешивание (выравнивание по форме и энергии) одной s - и одной р -орбиталей с образованием двух гибридных s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода.

Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям у -связей.

На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp-гибридных орбиталей, и двух р-связей.

Карбид кальция производят в промышленном масштабе нагреванием угля в электрических печах с негашеной известью при температуре около 2500 °С по реакции

CaO + 3C> CaC2 + CO.

Если на карбид кальция подействовать водой, то он бурно разлагается с выделением газа - ацетилена:

Более новый промышленный метод получения ацетилена - пиролиз углеводородов, в частности, метана, который при 1400 °С дает смесь ацетилена с водородом:

2CH4> H-C=C-H + 3H2.

1. Дегидрогалогенирование вицинальных дигалогеналканов

2. Реакция ацетиленидов натрия с первичными алкилгалогенидами:

3. Дегалогенирование вицинальных тетрагалогеналканов:

9. Методы получения и химические свойства спиртов

Спирты - это производные углеводородов, в которых один или несколько атомов водорода замещены на соответствующее число гидроксильных групп (-ОН).

Общая формула спиртов

где R - алкильная или замещенная алкильная группа.

Характер радикала R, с которым связана гидроксильная группа, определяет предельность или непредельность спиртов, а количество гидроксильных групп определяет его атомность: спирты бывают одноатомные, двухатомные, трехатомные и многоатомные.

Получение: 1. Гидратация алкенов

2. Ферментативный гидролиз углеводов . Ферментативный гидролиз сахаров под действием дрожжей - наиболее древний синтетический химический процесс - до сих пор имеет огромное значение для получения этилового спирта.

При использовании крахмала в качестве исходного материала, кроме этилового спирта, образуется еще (в меньших количествах) сивушное масло, представляющее собой смесь первичных спиртов, главным образом изопентилового, изопропилового и изобутилового.

3. Синтез метилового спирта:

4. Реакция гидроборирования-окисления алкенов :

5. Синтезы спиртов с помощью реактива Гриньяра :

Свойства: Химические свойства спиртов определяются как строением алкильного радикала, так и реакционноспособной гидроксильной группой. Реакции, идущие с участием гидроксильной группы, могут протекать либо с разрывом связи С-ОН (360 кДж/моль), либо с разрывом связи О-Н (429 кДж/моль) А. Разрыв связи С-ОН

1. Реакция с галогенводородами:

ROH + HX >RX + H2O.

Реакционная способность уменьшается в ряду: HI > HBr > HCl

2. Реакция с тригалогенидами фосфора:

3. Дегидратация спиртов в присутствии водоотнимающих агентов:

Б. Разрыв связи О-Н

4. Реакция спиртов с металлами (Na, K, Mg, Al)

5. Образование эфиров :

Реакция этерефикации

6. Реакции окисления При окислении спиртов хромовой смесью или KMnO4 в растворе серной кислоты состав продуктов зависит от характера углеродного атома (первичный, вторичный или третичный), с которым связана гидроксильная группа: первичные спирты образуют альдегиды, вторичные спирты - кетоны.

9. Алкадиены и способы их получения

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы

Две двойные связи в молекуле углеводорода могут быть расположены различным образом.

Если они сосредоточены у одного углеродного атома, их называют кумулированными:

Если две двойные связи разделены одной простой связью, их называют сопряженными:

Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными:-C=C- (CH2)n - C=C-

Диены обычно получают теми же методами, что и простые алкены. Например, наиболее важный диен, бутадиен-1,3 (используемый для получения синтетического каучука), получают в США при дегидрировании бутана:

В СССР применялся промышленный синтез бутадиена-1,3 по методу С.В. Лебедева (1933) из этилового спирта при 400…500 °С над катализатором MgO-ZnO:

Реакция включает следующие стадии: дегидрирование спирта до альдегида, альдольную конденсацию ацетальдегида, восстановление альдоля до бутандиола-1,3 и наконец дегидратацию спирта:

10. Электроотрицательность элементов и типы химических связей

Элемктроотрицамтельность (ч) (относительная электроотрицательность) -- фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов.

Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов VII-группы, O, Kr, Xe), а низкая -- у активных металлов (s-элементов I группы).

Ионная. Электронная конфигурация инертного газа для любого атома может образоваться благодаря переносу электронов: атомы одного из элементов отдают электроны, которые переходят к атомам другого элемента.

В данном случае между этими атомами образуется так называемая ионная (электровалентная, гетерополярная) связь.

Такого типа связь возникает между атомами элементов, обладающих существенно различной электроотрицательностью (например, между типичным металлом и типичным неметаллом).

Ковалентная связь. При взаимодействии атомов, равных (атомы одного и того же элемента) или близких по электроотрицательности, переноса электронов не происходит. Электронная конфигурация инертного газа для таких атомов образуется вследствие обобщения двух, четырех или шести электронов взаимодействующими атомами. Каждая из обобществленных пар электронов образует одну ковалентную (гомеополярную) связь:

Ковалентная связь - наиболее распространенный в органической химии тип связи. Она достаточно прочная.

Ковалентная связь и соответственно молекула могут быть неполярными, когда оба связанных атома обладают одинаковым сродством к электрону (например, Н:Н). Она может быть полярной, когда электронная пара вследствие большего сродства к электрону одного из атомов оттянута в его сторону:

При таком способе обозначения + и - означают, что на атоме со значком - избыточная электронная плотность, а на атоме со значком + электронная плотность несколько понижена по сравнению с изолированными атомами.

Донорно-акцепторная связь. При взаимодействии атомов, имеющих неподеленные электронные пары с протоном или другим атомом, у которого не хватает до образования октета (дублета) двух электронов, неподеленная электронная пара становится общей и образует между этими атомами новую ковалентную связь.

При этом атом, отдающий электроны, называется донором, а атом, принимающий электроны, называется акцептором:

химический ковалентный бензольный нафталин

В возникающем ионе аммония образовавшаяся ковалентная связь отличается от связей, существовавших в молекуле аммиака, только способом образования, по физическим и химическим свойствам все четыре связи N-H абсолютно идентичны.

Семиполярная связь. Эта разновидность донорно-акцепторной связи часто встречается в молекулах органических соединений (например, в нитросоединениях, в сульфоксидах и др.).

Размещено на Allbest.ru

Подобные документы

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.

    презентация , добавлен 15.10.2013

    Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.

    презентация , добавлен 11.08.2013

    Гибридизация – квантово-химический способ описания перестройки орбиталей атома в молекуле по сравнению со свободным атомом. Изменение формы и энергии орбиталей атома при образовании ковалентной связи и достижения более эффективного перекрывания орбиталей.

    презентация , добавлен 22.11.2013

    Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация , добавлен 22.04.2013

    Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа , добавлен 05.08.2013

    Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.

    реферат , добавлен 04.02.2009

    Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа , добавлен 02.11.2008

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.

    презентация , добавлен 22.10.2013

    Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат , добавлен 21.02.2009

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле пропиновой кислоты:

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p- орбиталей образуются четыре sp 3 -гибридных орбитали:

В случае атомов углерода в гибридизации всегда принимает участие s- орбиталь, а количество p -орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p- орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp 3 , либо в состоянии sp 2 , либо в состоянии sp- гибридизации:

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:

Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp -гибридизации.

  • Второй атом углерода связан с двумя атомами – sp -гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp 3 -гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp 2 -гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил .

Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

Данный урок поможет вам получить представление о теме «Ковалентная связь в органических соединениях». Вы вспомните природу химических связей. Узнаете о том, за счет чего образуется ковалентная связь, что является основой этой связи. На этом уроке также рассматривается принцип построения формул Льюиса, рассказывается о характеристиках ковалентной связи (полярности, длине и прочности), объясняется теория А. Бутлерова, рассказывается о том, что такое индуктивный эффект.

Тема: Введение в органическую химию

Урок: Ковалентная связь в органических соединениях.

Свойства связи (полярность, длина, энергия, направленность)

Химическая связь имеет в основном электростатический характер. Например, молекула водорода образуется из двух атомов, потому что двум электронам энергетически выгодно находиться в поле притяжения двух ядер (протонов). Это состояние в виде молекулы Н 2 обладает меньшей энергией по сравнению с двумя отдельными атомами водорода.

Большинство органических веществ содержат .

Для образования ковалентной связи между двумя атомами каждый атом обычно предоставляет в общее пользование по одному электрону.

В упрощенной модели используется двухэлектронное приближение, т.е. все молекулы строятся на основании суммирования двух электронных связей, характерных для молекулы водорода.

С точки зрения закона взаимодействия электрических зарядов (закон Кулона) электроны не могут сблизиться из-за огромных сил электростатического отталкивания. Но, согласно законам квантовой механики, электроны с противоположно направленными спинами взаимодействуют друг с другом и образуют электронную пару.

Если ковалентную связь обозначать как пару электронов, получим еще один вид записи формулы вещества - электронную формулу или формулу Льюиса

(амер. Дж. Льюис, 1916 г.). Рис. 1.

Рис. 1. Формулы Льюиса

В органических молекулах имеются не только одинарные связи, но еще двойные и тройные. В формулах Льюиса их обозначают, соответственно, двумя или тремя парами электронов. Рис. 2

Рис. 2. Обозначение двойной и тройной связей

Рис. 3. Ковалентная неполярная связь

Важной характеристикой ковалентной связи является ее полярность . Связь между одинаковыми атомами, например в молекуле водорода или между атомами углерода в молекуле этана неполярная - в ней электроны в равной степени принадлежат обоим атомам. См. Рис. 3.

Рис. 4. Ковалентная полярная связь

Если же ковалентная связь образована различными атомами, то электроны в ней смещены к более электроотрицательному атому. Например, в молекуле хлороводорода электроны смещены к атому хлора. На атомах возникают небольшие частичные заряды, которые обозначают d+ и d-. Рис. 4.

Чем больше разница между электроотрицательности атомов, тем более полярная связь.

Взаимное влияние атомов в молекуле приводит к тому, что может происходить смещение электронов связи, даже если они находятся между одинаковыми атомами.

Например, в 1,1,1-трифторэтане CH 3 CF 3 электроотрицательные атомы фтора «стягивают» на себя электронную плотность с атома углерода. Часто это обозначают стрелочкой вместо валентной черточки.

В результате у атома углерода, связанного с атомами фтора, возникает недостаток электронной плотности, и он перетягивает валентные электроны к себе. Такое смещение электронной плотности по цепи связей называется индуктивным эффектом заместителей . Рис. 5.

Рис. 5. Смещение электронной плотности в 1,1,1-трифторэтане

Длина и прочность связи

Важными характеристиками ковалентной связи являются ее длина и прочность. Длина большинства ковалентных связей составляет от 1*10 -10 м до 2*10 -10 м или от 1 до 2 в ангстремах (1 А = 1*10 -10 м).

Прочность связи - это энергия, которую нужно затратить, чтобы разорвать эту связь. Обычно приводят величины разрыва 1 моль или 6,023*10 23 связей. См. табл. 1.

Одно время считалось, что молекулы можно изображать структурными формулами, лежащими в плоскости бумаги, и эти формулы отражают, почти отражают, истинное строение молекулы. Но примерно в середине 19 века выяснилось, что это не так. Впервые к такому выводу пришел, как я уже говорил на предыдущих уроках, тогда еще студент Вант-Гофф. А сделал он это на основании экспериментов выдающегося французского биолога и химика Пастера.

Дело в том, что Пастер занимался изучением солей винной кислоты. И ему, можно сказать, повезло. Кристаллизуя смешанную соль винной кислоты, он под микроскопом обнаружил, что у него получается, в общем-то, набор совершенно одинаковых, весьма симпатичных кристаллов. Но эти кристаллы легко разделить на две группы, которые никак не совместимы друг с другом, а именно: все кристаллы делятся на две части, одна из которых является зеркальным отражением другой.

Так была впервые открыта оптическая, или зеркальная, . Пастер смог вручную пинцетом под микроскопом разделить эти кристаллы и обнаружил, что все химические свойства практически совпадают. Не совпадает только одно, скорее, физическое свойство, а именно: растворы одного типа кристаллов и ему зеркального другого типа кристаллов по-разному вращали плоскость поляризации света, проходящего через них.

Рис. 6. Модели молекулы метана

Для того чтобы объяснить результаты экспериментов Пастера, Вант-Гофф предположил, что атом углерода находится всегда в неплоском окружении, причем это не плоское окружение не имеет ни центра, ни плоскости симметрии. Тогда атом углерода, соединенный с 4 другими различными фрагментами молекулы, не одинаковыми между собой, должен обладать зеркальной симметрией. Именно тогда Вант-Гофф предположил тетраэдрическое строение атома углерода. Оптическая изомерия следовала из этого предположения. В результате удалось объяснить пространственное строение органических соединений. Рис. 6.

Но ученые столкнулись с еще одной загадкой, которую не удалось разрешить до сих пор. Дело в том, что в природе органические соединения, которые образуются действительно в органической живой материи, как правило, содержат левовращающие, имеется в виду плоскость поляризации проходящего света, аминокислоты и правовращающие сахара. В то время как при любом органическом синтезе обязательно получается смесь таких изомеров.

Причина такой избирательности живой природы не ясна до сих пор. Но это не мешает ученым продолжать синтезировать все новые органические соединения и изучать их свойства.

В нарисованных на плоскости формулах не отражается пространственное расположение атомов относительно друг друга. Однако тетраэдрическое строение атома углерода в молекулах с одинарными связями приводит к существованию оптической изомерии

Подведение итога урока

Вы получили представление о теме «Ковалентная связь в органических соединениях». Вы вспомнили природу химических связей. Узнали о том, за счет чего образуется ковалентная связь, что является основой этой связи. Рассмотрели принцип построения формул Льюиса. Узнали о характеристиках ковалентной связи (полярности, длине и прочности), что такое индуктивный эффект.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 12, 15 (с. 11) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Составьте структурные и электронные формулы этана С 2 Н 6 , этена С 2 Н 4 , пропина С 3 Н 8.

3. Приведите примеры из неорганической химии, показывающие, что атомы в молекуле влияют друг на друга и их свойства при этом изменяются.

Органическая химия имеет исключительно важное познавательное и народнохозяйственное значение.

Природные органические вещества и их превращения лежат в основе явлений Жизни. Поэтому органическая химия является химическим фундаментом биологической химии и молекулярной биологии – наук, изучающих процессы, происходящие в клетках организмов на молекулярном уровне. Исследования в этой области позволяют глубже понять суть явлений живой природы.

Множество синтетических органических соединений производится промышленностью для использования в самых разных отраслях человеческой деятельности – это нефтепродукты, горючее для различных двигателей, полимерные материалы (каучуки, пластмассы, волокна, пленки, лаки, клеи и т.д.), поверхностно-активные вещества, красители, средства защиты растений, лекарственные препараты, вкусовые и парфюмерные вещества и т.п. Без знания основ органической химии современный человек не способен грамотно использовать все эти продукты цивилизации.

Сырьевыми источниками органических соединений служат нефть и природный газ, каменный и бурый угли, горючие сланцы, торф, продукты сельского и лесного хозяйства.

Критерием деления соединений на органические и неорганические служит их элементный состав.

К органическим соединениям относятся химические вещества, содержащие в своем составе углерод, например:

CH 3 -CN, CH 3 -CH 2 -OH, CS 2 , CH 3 COOH, CH 3 -NH 2 , CH 3 -NO 2 , CH 3 -COOC 2 H 5 .

Органические соединения отличаются от неорганических рядом характерных особенностей:

· почти все органические вещества горят или легко разрушаются при нагревании с окислителями, выделяя СО 2 (по этому признаку можно установить принадлежность исследуемого вещества к органическим соединениям);

· в молекулах органических соединений углерод может быть соединен почти с любым элементом периодической системы;

· органические молекулы могут содержать последовательность атомов углерода, соединенных в цепи (открытые или замкнутые);

· молекулы большинства органических соединений не диссоциируют на достаточно устойчивые ионы;

· реакции органических соединений протекают значительно медленнее и в большинстве случаев не доходят до конца;

· среди органических соединений широко распространено явление изомерии ;

· органические вещества имеют более низкие температуры фазовых переходов (т. кип., т. пл.).

Органических соединений насчитывается гораздо большее количество, чем неорганических.

Основные положения теории химического строения Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы – предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Уже с того момента, когда исследователи научились определять элементный состав соединений, было замечено, что часто соединения с одинаковым элементным составом обладают совершенно разными химическими и физическими свойствами. Выявление причин такого поведения стимулировало создание теории строения органических соединений. Впервые такая теория была сформулирована А.М. Бутлеровым.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Строение атома углерода

Очевидно, что все реакции, в которые вступают органические молекулы, связаны со строением атома углерода конкретной молекулы и перестройкой его внешних валентных орбиталей в процессе превращений.

В невозбужденном состоянии атом углерода имеет 2 электрона на s -орбитали второго подуровня (2s -орбитали), а также 2 электрона на двух (из всего 3) p -орбиталей 2 подуровня (2p x - и 2p y -орбиталях):

Таким образом, на внешних орбиталях у углерода имеется 4 электрона, способных к образованию связей. Согласно теории, формы s - и р-орбиталей описывают вероятность нахождения электрона относительно ядра атома. Негибридизованные s - и р-орбитали имеют формы сферы и равномерной «гантели» и располагаются в пространстве согласно нижеприведенной схеме:

При образовании соединений из атомарного углерода (или в составе соединений углерода) происходит изменение формы и расположения в пространстве относительно ядра атома внешних орбиталей углерода, называемое гибридизацией . Схематически гибридизацию можно представить таким образом:

Из четырех негибридизованных атомных s - и р-орбиталей, имеющих разную форму, в результате sp 3 -гибридизации (что означает изменение одной s - и трех р -орбиталей) получаются четыре равноценных по энергии и форме гибридизованны е молекулярные орбитали, имеющие форму искаженной гантели.

Для обеспечения минимальных стерических затруднений и взаимного отталкивания эти четыре равноценные орбитали расположены в пространстве на равных друг от друга расстояниях, направлены к вершинам тетраэдра (ядро атома углерода располагается в центре тетраэдра), а пространственные углы между орбиталями составляют около 109° 28’:

В таком состоянии четыре связи в результате перекрывания орбиталей могут быть образованы беспрепятственно. В такой гибридизации углерод присутствует (исключительно) в составе алканов, циклоалканов и спиртов.

Таким образом, например, выглядит молекула этана (желтыми сферами показаны атомы водорода, точнее, их s -орбитали):

Связь между атомами углерода образована перекрыванием гибридизованных орбиталей. Такие связи называют s - связями (сигма-связями). Вокруг s - связи возможно вращение фрагментов молекулы.

Гибридизация – изменение формы и расположения в пространстве относительно ядра атома его внешних электронных орбиталей , при образовании связей с другими атомами. Другое определение: гибридизация – смешение орбиталей , в результате которого происходит их выравнивание по форме и энергии.

Атом углерода, имеющий при себе кратную связь (алкены -С=С -, карбонильные соединения >C =O , карбоновые кислоты и их производные -СООН, -COOR и т.д.), имеет другую гибридизацию (sp 2), соответственно, форму и расположение в пространстве внешних орбиталей:

В состоянии sp 2 -гибридизации при углероде имеется только 3 гибридизованных орбитали (полученные из одной s - и двух р-орбиталей), которые расположены в одной плоскости под углом 120° между ними, а четвертая (негибридизованная ) р-орбиталь располагается перпендикулярно этой плоскости. Двойная связь образуется в результате перекрывания негибридизованных орбиталей между соседними атомами углерода (или между углеродом и кислородом), на рисунке представлена молекула этилена (этена):

Связи, образуемые перекрыванием негибридизованных р-орбиталей, называют p - связями. Таким образом, кратная (двойная) связь в молекуле этена образована одной сигма- и одной пи-связью.

Вращение фрагментов молекулы вокруг p - связи по понятным причинам при нормальной температуре невозможно (необходима дополнительная энергия на разрыв перекрывающихся р-орбиталей), это обуславливает наличие пространственных (геометрических) изомеров у алкенов, при наличии некоторых дополнительных условий, о которых будет сказано ниже.

На рисунке негибридизованные р-орбитали находятся на расстоянии – разнесены искусственно, для лучшего восприятия, хотя в реальности они «соприкасаются» друг с другом, перекрываясь сверху и снизу, но образуя только одну дополнительную связь.

Углерод при тройной связи (в алкинах и нитрилах) находится в состоянии sp -гибридизации :

Пара гибридизованных орбиталей расположена в линию, под углом 180° и противоположно направлена. Две негибридизованные р-орбитали, согласно принципу минимального отталкивания и для минимизации стерических затруднений, расположены перпендикулярно этой линии и под углом 90° между собой. Тройная связь в алкинах образуется в результате перекрывания гибридизованных орбиталей (одна s - связь) и двух негибридизованных р-орбиталей соседних атомов углерода (две p -связи). Так, например, выглядит модель молекулы ацетилена (этин ):

В результате протекания реакций углерод способен как менять, так и сохранять состояние своей гибридизации.

Типы связей в молекулах органических веществ

Преобладающим типом связи в молекулах органических соединений является ковалентная связь. Пара электронов связи поделена между атомами в примерно равной степени, если характеризовать связи С-С или С-Н. Это вызвано примерно равным сродством к электрону (электроотрицательностью ) атомов С и Н.

В случае, когда углерод связан с более электроотрицательным атомом (галогены, кислород, азот), связь может быть в значительной степени поляризована, а на атомах могут образовываться частичные положительные (на углероде) и отрицательные (на атомах галогенов, кислорода, азота) заряды. Однако степень ионности такой связи минимальна.

Вследствие неполярности связи С-С и С-Н преимущественным способом ее разрыва является гомолитический , когда пара электронов делится поровну между атомами. При таком разрыве связи образуются незаряженные, но очень реакционно-способные частицы с неспаренными электронами, называемые радикалами. Для алканов очень характерны реакции с промежуточным образованием радикалов. Инициируются такие превращения введением извне энергии, достаточной для разрыва связи (нагрев) или соединений, инициирующих образование радикалов при слабом нагревании или облучении ультрафиолетом (перекиси, галогены, азосоединения , химические инициаторы, генерирующие радикалы в результате химической реакции). В общем и целом, алканы и циклоалканы с ненапряженными циклами химически относительно инертны .

В отличие от них, алкены значительно более реакционноспособны . Причиной этого является ненасыщенность (кратная связь) и доступность рыхлой электронной плотности перекрывающихся р-орбиталей p - связи для действия электрофильных реагентов (соединений с пустыми внешними орбиталями или электронодефицитных соединений). В результате происходит исчезновение кратной связи и присоединение электрофилов. Реакции протекают с промежуточным образованием положительно заряженных интермедиатов (карбкатионов) или радикалов.

Другая группа реакций связана с поляризацией связи углерод-галоген, кислород или азот. Эти реакции имеют более сложный механизм и зависимость от строения субстрата, реагента и условий реакции (растворитель, катализатор и т.д.).

Существуют и более сложные типы реакций (циклоприсоединение или реакция Дильса–Альдера ), детальный механизм которых изучен пока не во всех тонкостях.

Типы реакций в органической химии

Таким образом, можно различить всего несколько типов реакций, в которые вступают органические соединения:

1)реакции замещения , когда один атом (или группировка атомов) замещаются другим атомом (или группировкой атомов). Углеродный скелет при этом остается неизменным. Реакции протекают через предварительный разрыв связи с последующим образованием новой;

2)реакции присоединения . Характерны для соединений, имеющих ненасыщенность (кратные связи), в результате чего возможно присоединение других молекул (водорода, воды, галогенов, кислорода, галогеноводородов и т.д.);

3)реакции отщепления (элиминирования), когда от молекулы органического соединения отщепляются молекулы (воды, аммиака, галогенов, галогеноводородов, водорода, СО, СО 2 и т.д.). Такие реакции часто носят наименование по виду отщепляемой молекулы, соответственно, дегидратация, дезаминирование , дегалогенирование , дегидрогалогенирование , дегидрирование, декарбонилирование , декарбоксилирование и т.д.;

4)реакции конденсации , когда происходит укрупнение углеродного скелета молекулы;

5)реакции крекинга (или расщепления), в результате которых происходит расщепление углеродного скелета на более мелкие молекулы;

6)реакции окисления , сопровождающиеся удалением молекул водорода (частный случай реакции отщепления), или с одновременным внедрением молекул кислорода (превращение спиртов в альдегиды и кетоны и, далее, в кислоты);

7)реакции изомеризации (или перестройки углеродного скелета или циклов);

8)реакции полимеризации , в результате которой из мелких молекул (мономеров) получаются длинные неразветвленные молекулы полимеров. В живой природе известны примеры образования разветвленных полимерных молекул, структурными единицами в которых выступают органические молекулы моносахаридов (углеводов).

Классификация органических соединений

Несмотря на многообразие органических соединений, основу их молекул составляют цепи и кольца, образованные из атомов углерода. Соединения, в состав которых входят только углерод и водород, называются углеводородами . При этом часть валентностей углерода затрачивается на образование связей с соседними атомами углерода, а свободные валентности связывают углерод с водородом, кислородом, азотом, серой и, значительно реже, с другими атомами периодической системы. Очень часто такой «скелет» из атомов углерода сохраняется в результате химических превращений, претерпеваемых молекулой органического соединения, что значительно облегчает предсказание состава продуктов. Часто реакции ограничиваются заменой одного или нескольких атомов водорода на другой элемент или группу атомов (по другому называемой группировкой или функциональной группой ), в результате чего получается органическое соединение другого класса. В зависимости от группировки, заменившей один из атомов водорода в молекуле органического соединения в результате реакции, различают классы органических соединений.

Часто в результате реакции происходит замена одной функциональной группы на другую, при сохранении углеродного скелета. Однако известны и многочисленные реакции, сопровождающиеся изменением углеродного скелета молекулы.

Таблица

Некоторые функциональные группы органических соединений

Функциональная группа

Название группы

Класс соединений

Общая структура

Примеры

- Cl , -F, -Br, -I

(-Х)

Галоген

Галогениды

Бромбензол

Этенилхлорид (винилхлорид)

-ОН

Гидроксил (окси, гидрокси )

Спирты, фенолы

R-OH

Фенол

Метанол

> С=О

Карбонил (оксо )

Альдегиды, кетоны

Пропанон (ацетон)

Этаналь (ацетальдегид)

-СООН

Карбоксил (карбокси )

Карбоновые кислоты

Этановая кислота (уксусная кислота)

- NO 2

Нитро

Нитросоединения

Нитрометан

-NH 2

Амино

Амины

Аминометан (метиламин)

-CN

Циано

Нитрилы

Этаннитрил (ацетонитрил )

Гомологи и гомологические ряды

Гомологи – органические соединения (одного класса, см. выше), различающиеся на одну или несколько метиленовых групп (звеньев -С Н 2 -). Гомологами у алканов являются, например, метан, этан, пропан, бутан и т.д., у которых число атомов углерода изменяется на единицу (или на такое же число метиленовых звеньев).

Гомологами ароматических соединений являются бензол, толуол, ксилолы, мезитилен , этилбензол и прочие алкилзамещенные бензолы. Эти соединения по брутто-формуле также различаются на одно или несколько метиленовых звеньев (-СН 2 -). Соответственно, гомологами являются метанол, пропанол и этанол, ацетон и метилэтилкетон , уксусная и пропионовая кислоты и т.д.

Изомерия органических соединений

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными).

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов. Например, н -бутан и изобутан имеют одну молекулярную формулу C 4 H 10 , но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами. Еще до создания теории строения были известны вещества одинакового элементного состава, но с разными свойствами. Такие вещества были названы изомерами , а само это явление – изомерией . В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом, изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4 атомов углерода и 10 атомов водорода возможно существование двух изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную ипространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C 4 H 8 соответствует 5 структурных изомеров:

Среди органических соединений теоретически возможно существование колоссального количества только структурных изомеров. Так, среди алканов, содержащих только атомы углерода и водорода, число возможных изомеров увеличивается в геометрической прогрессии с увеличением количества атомов углерода. Если для соединения состава С 4 Н 10 возможно существование только двух изомеров, то для пентанов С 5 Н 12 число таких изомеров увеличивается до трех, С 6 Н 14 имеет 5 изомеров, С 7 Н 16 – 9 изомеров, С 8 Н 18 – 18 изомеров, С 9 Н 20 – 35 изомеров, а для соединения пентакозан С 25 Н 52 теоретически возможно существование ни много ни мало- 36 797 588 изомеров.

На приведенном выше примере можно различить следующие изомеры:

- положения двойной связи (бутен-1 и бутен-2);

- углеродного скелета (бутены-1 и -2 и изобутилен);

- размеров цикла (циклобутан и метилциклопропан );

- межклассовые изомеры (алкены и циклоалканы ).

Межклассовыми изомерами являются, например, этанол и диметиловый эфир, имеющие одинаковую брутто-формулу С 2 Н 6 О, но совершенно разное строение и относящиеся к разным классам. У них различаются не только химические свойства (более инертный диметиловый эфир не реагирует с металлическим натрием, в отличие от этанола), но и физические. Этанол – жидкость при нормальной температуре, тогда как диметиловый эфир – газ.

Циклические и ациклические органические соединения

Можно заметить, что среди структурных изомеров органических соединений могут существовать молекулы, содержащие в своем составе циклы, построенные из атомов углерода разного числа (а часто и не один такой цикл в составе молекулы). На этом основании различают али циклические соединения (содержащие циклы, или просто циклические соединения) и а циклические соединения (циклов не содержащие, а построенные исключительно из цепей атомов углерода, часто разветвленных).

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающиеся по химическим свойствам группы: алифатические циклические (сокращенно алициклические ) и ароматические соединения.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов – гетероатомов (от греч. heteros – другой, иной) – кислород, азот, серу и др.

Пространственная изомерия

Пространственные изомеры (геометрические изомеры, стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические (зеркальные) и цис-транс- изомеры . В показанном выше примере пространственными изомерами может обладать бутен-2, существующий в природе в виде цис - и транс- бутенов-2:

Пространственная изомерия появляется, в частности, тогда, когда углерод имеет четыре разных заместителя:

Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией .

Более подробно с оптической изомерией можно познакомиться в разделе кислородсодержащих и азотсодержащих органических соединений.

Оптическая изомерия – частный случай пространственной изомерии. Оптическими изомерами называют различающиеся пространственным расположением группировок и атомов молекулы, имеющие одинаковый состав и одинаковый порядок связи атомов. Растворы таких соединений способны вращать плоскость пропускаемого через них поляризованного света на определенный угол.

1.3.3. Номенклатура органических соединений

Вследствие наличия огромного числа органических соединений огромное значение приобретает система их обозначения (наименования) таким образом, чтобы по названию можно было легко установить его структуру (химическое строение), а соответственно, и все химические и физические свойства. Таким образом, наименование должно максимально точно отражать химическое строение органического соединения, включая возможность идентификации структурных и геометрических изомеров. К настоящему моменту времени сложилось три типа номенклатуры органических соединений:

1. тривиальная ;

2. рациональная ;

3. систематическая (или заместительная, или номенклатура IUPAC ).

Наличие тривиальных названий связано с историей. Ранее исследователи часто давали наименования соединениям по источнику их выделения или по каким-либо органолептическим, физико-химическим свойствам. Тривиальные наименования находятся в обращении иногда на таких же правах (если не чаще), чем систематические названия. Так, например, до сих пор бытует название уксусная кислота, муравьиная кислота, лактоза, мочевина и многие другие названия.

Рациональная номенклатура

Этот тип номенклатуры получил распространение в результате того, что часть соединений может быть названа как некое родоначальное соединение, от которого они отличаются заместителями. Примером может являться неопентан («новый пентан»), углеводород класса алканов состава С 5 Н 12 . Название «неопентан » считается тривиальным, и ровным счетом ничего не говорит о его строении. Согласно номенклатуре второго типа, этот углеводород можно назвать тетраметилметаном . Название тетраметилметан уже значительно более информативно в смысле сведений о строении молекулы. Можно представить себе молекулу метана, у которой все четыре атома водорода заменены метильными группами.

Систематическим же названием неопентана является наименование 2,2-диметилпропан , составленное по правилам, разработанным Международным союзом чистой и прикладной химии (IUPAC – International Union of Pure and Applied Chemistry ). Структурная формула неопентана приведена ниже:

Детальное рассмотрение правил наименования органических соединений нами будет сделано позднее, при рассмотрении отдельных классов органических соединений, поскольку в каждом случае имеются свои особенности.

Замещение атомов водорода в молекулах алканов на любой гетероатом (галоген, азот, серу, кислород и т.д.) или группу вызывает перераспределение электронной плотности. Природа этого явления различна. Она зависит от свойств гетероатома (его электроотрицательности) и от типа связей, по которым это влияние распространяется.

Индуктивный эффект

Если влияние заместителя передается при участии s - связей, то происходит постепенное изменение электронного состояния связей. Такая поляризация называется индуктивным эффектом (I) , изображается стрелкой в направлении смещения электронной плотности. Электронная плотность всегда смещается в сторону БОЛЕЕ ЭЛЕКТРООТРИЦАТЕЛЬНОГО атома или группы атомов:

СН 3 -СН 2 -->Cl ,

HO СН 2 -СН 2 --> Cl ,

СН 3 -СН 2 --> COOH ,

СН 3 -СН 2 --> NO 2 и т.д.

Индуктивный эффект обусловлен стремлением атома или группы атомов подавать или оттягивать на себя электронную плотность, в связи с чем он может быть положительным или отрицательным. Отрицательный индуктивный эффект проявляют элементы, более электроотрицательные, чем углерод, т.е. галогены, кислород, азот и другие, а также группы с положительным зарядом на элементе, связанном с углеродом. Отрицательный индуктивный эффект уменьшается справа налево в периоде и сверху вниз в группе периодической системы:

F > O > N,

F > Cl > Br > J.

В случае заместителей с полным зарядом отрицательный индуктивный эффект увеличивается с возрастанием электроотрицательности атома, связанного с углеродом:

>O + - >> N + < .

В случае сложных заместителей отрицательный индуктивный эффект определяется природой атомов, составляющих заместитель. Кроме этого, индуктивный эффект зависит от характера гибридизации атомов. Так, электроотрицательность атомов углерода зависит от гибридизации электронных орбиталей и изменяется в следующем направлении:

sp3 < sp2 < sp .

Положительный индуктивный эффект проявляют элементы, менее электроотрицательные, чем углерод; группы с полным отрицательным зарядом; алкильные группы. +I-эффект уменьшается в ряду:

(СН 3 ) 3 С - > (CH 3) 2 CH- > CH 3 -CH 2 - > CH 3 - > H-.

Индуктивный эффект заместителя быстро затухает по мере увеличения длины цепи.

Таблица

Сводная таблица заместителей и их электронных эффектов

X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p -

X- (галоген ), -O - , -OH, -OR, -NH 2 , -NHR, -NR 2 , -SH, -SR,

–I, +M

присоединенный к p -

СНХ 2 , -CX 3 , -C=N=S

–I, –M

Более электроотрицательный углерод (в сравнении с sp3):

СН=СН- , -С=

(но легко передают М-эффект в любом направлении)

–I, M = 0

N + H 3 , -N + R 3 , (-S + R 2 ,-O + H 2),

–I, M = 0

Мезомерный эффект

Наличие заместителя со свободной парой электронов или вакантной р-орбиталью , присоединенного к системе, содержащей p-электроны, приводит к возможности смешения р-орбиталей заместителя (занятых или вакантных) с p-орбиталями и перераспределению электронной плотности в соединениях. Такой эффект называется мезомерным .

Смещение электронной плотности обычно незначительно и длины связей практически не меняются. О незначительном смещении электронной плотности судят по дипольным моментам, которые даже в случае больших эффектов сопряжения на крайних атомах сопряженной системы невелики.

Мезомерный эффект изображают изогнутой стрелкой, направленной в сторону смещения электронной плотности. Электронная плотность всегда смещается в сторону более электроотрицательного атома , находящегося на краю структуры и связанного с остальной структурой кратной связью :

В зависимости от направления смещения электронного облака мезомерный эффект может быть положительным (+М), атом или когда группировка атомов передают электроны в пи-систему:

и отрицательным (- М), когда группировка атомов вытягивает электроны из пи-системы:

Положительный мезомерный эффект (+М) уменьшается при увеличении электроотрицательности атома, несущего неподеленную пару электронов, вследствие снижения тенденции отдавать ее, а также при увеличении объема атома. Положительный мезомерный эффект галогенов изменяется в следующем направлении:

F > Cl > Br > J (+M -эффект).

Положительным мезомерным эффектом обладают группировки с неподеленными парами электронов на атоме, присоединенном к сопряженной пи -системе:

- NH 2 ( NHR , NR 2) > OH ( OR ) > X (галоген) (+М-эффект).

Положительный мезомерный эффект уменьшается в том случае, если атом связан с группой-акцептором электронов:

-NH 2 > -NH-CO-CH 3 .

Отрицательный мезомерный эффект возрастает с увеличением электроотрицательности атома и достигает максимальных значений, если атом-акцептор несет заряд:

>C=O + H >> >C=O.

Уменьшение отрицательного мезомерного эффекта наблюдается в случае, если группа- акцептор сопряжена с донорной группой:

-CO-O - << - СО -NH 2 < -CO-OR < -CO-H(R) << -CO- CO- < -CO-X (галоген ) (– М- эффект).

Таблица

Заместитель или группа атомов (X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p - системе, имеет неподеленную пару электронов:

X- (галоген

–I, +M

присоединенный к p - системе атом, в свою очередь, связан с более электроотрицательным атомом:

N=O, -NO 2 , -SO 3 H, -COOH, -CO-H, -CO-R, -CO-OR, -CN, - СНХ 2 , -CX 3 , -C=N=S

–I, –M

СН=СН- , -С= СН (этинил ), -С 6 Н 4 - (фенилен )

–I, M = 0

Атом, не имеющий р-орбиталей , но с полным положительным зарядом

–I, M = 0

Гиперконъюгация или сверхсопряжение

Эффект, подобный положительному мезомерному , возникает при замещении водорода у кратной связи алкильной группой. Этот эффект направлен в сторону кратной связи и называется гиперконъюгацией (сверхсопряжением):

Эффект напоминает положительный мезомерный, поскольку отдает электроны в сопряженную p - систему:

Сверхсопряжение уменьшается в последовательности:

СН 3 > CH 3 -CH 2 > (CH 3) 2 CH > (CH 3) 3 C.

Для проявления эффекта гиперконъюгации необходимо наличие хотя бы одного атома водорода при атоме углерода, соседствующем с p - системой. Трет-бутильная группировка не проявляет этого эффекта, а потому мезомерный эффект ее равен нулю.

Таблица

Сводная таблица заместителей и их электронных эффектов

Заместитель или группа атомов (X - галоген)

Эффекты

СН 3 > CH 3 -CH 2 - > (CH 3) 2 CH- >> CH 2 X

I, +M

(CH 3) 3 C-

I, M = 0

Атом, присоединенный к p - системе, имеет неподеленную пару электронов:

X- (галоген ), -O - , -OH, -OR, -NH 2 , -NHR, -NR 2 , -SH, -SR,

–I, +M

присоединенный к p - системе атом, в свою очередь, связан с более электроотрицательным атомом:

N=O, -NO 2 , -SO 3 H, -COOH, -CO-H, -CO-R, -CO-OR, -CN, - СНХ 2 , -CX 3 , -C=N=S

–I, –M

Более электроотрицательный углерод:

СН=СН- , -С= СН (этинил ), -С 6 Н 4 - (фенилен )

(но легко передают М-эффект в любом направлении)

–I, M = 0

Атом, не имеющий р-орбиталей, но с полным положительным зарядом

N + H 3 , -N + R 3 , (-S + R 2 , -O + H 2),

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то