Электрофильное замещение в ароматических углеводородах механизм. Электрофильное замещение. других групп в бензольном кольце

Реакции электрофильного замещения характерны для ароматических , карбоциклических и гетероциклических систем . В результате делокализации p-электронов в молекуле бензола (и других ароматических систем) p-электронная плотность распределена равномерно по обе стороны цикла. Подобное экранирование p-электронами атомов углерода цикла защищает их от атаки нуклеофильными реагентами и, наоборот, облегчает возможность атаки электрофильными реагентами.

Но в отличие от реакций алкенов с электрофильными реагентами, взаимодействие ароматических соединений с ними не приводит к образованию продуктов присоединения, так как в этом случае нарушалась бы ароматичность соединения и уменьшалась его устойчивость. Сохранение ароматичности возможно в случае, если электрофильная частица заместит катион водорода .

Механизм реакций электрофильного замещения похож на механизм реакций электрофильного присоединения, так как имеются общие закономерности протекания реакций.

Общая схема механизма реакций электрофильного замещения S Е:

На первом этапе реакции образуется p-комплекс с электрофильной частицей (быстрая стадия), который затем превращается в s-комплекс (медленная стадия) за счет образования s- связи одним из атомов углерода с электрофильной частицей. Для образования s- связи с электрофильной частицей из сопряжения «вырывается» пара электронов, а образующийся продукт приобретает положительный заряд. В s-комплексе ароматичность нарушена, так как один из атомов углерода находится в sp 3 -гибридизации, а на пяти других атомах углерода делокализованы четыре электрона и положительный заряд.

Для регенерации термодинамически выгодной ароматической системы происходит гетеролитический разрыв связи C sp 3 -Н. В результате отщепляется ион Н + , а пара электронов связи идет на восстановление системы сопряжения, при этом у атома углерода, отщепившего протон, изменяется гибридизация атомных орбиталей с sp 3 на sp 2 . Механизм реакций нитрования, сульфирования, галогенирования, алкилирования, ацилирования ароматических соединений включает еще дополнительную стадию, не указанную в общей схеме - стадию генерирования электрофильной частицы.

Уравнение реакции нитрования бензола имеет вид:

В реакциях нитрования генерирование электрофильной частицы происходит в результате взаимодействия азотной и серной кислот, что приводит к образованию катиона нитрония NO 2 + , который далее реагирует с ароматическим соединением:

В молекуле бензола все атомы углерода равноценны, замещение происходит у одного из них. Если в молекуле присутствуют заместители, то реакционная способность и направление электрофильной атаки определяется природой этого заместителя. По влиянию на реакционную способность и на направление атаки все заместители делятся на две группы.


Ориентанты I рода . Эти заместители облегчают электрофильное замещение по сравнению с бензолом и направляют входящую группу в орто- и пара-положения. К ним относятся электронодонорные заместители, увеличивающие электронную плотность в бензольном ядре. В результате ее перераспределения в положения 2,4,6 (орто- и пара-положения) возникают частичные отрицательные заряды, что облегчает присоединение электрофильной частицы в эти положения с образованием s-комплекса.

Ориентанты II рода . Эти заместители затрудняют реакции электрофильного замещения по сравнению с бензолом и направляют входящую группу в одно из мета-положений. К ним относятся электроноакцепторные заместители, уменьшающие электронную плотность в бензольном кольце. В результате ее перераспределения в положениях 3,5 (мета-положения) возникают частичные отрицательные заряды и присоединение электрофильной частицы с образованием s-комплекса идет в жестких условиях.

Атомы галогенов направляют электрофильную частицу в орто- или пара- положения (за счет положительного мезомерного эффекта), но при этом затрудняют протекание реакции, так как являются электроноакцепторными заместителями (-I>+M). Реакции галогенпроизводных бензола с электрофильными реагентами идут в жестких условиях.

В реакциях сульфирования роль электрофильной частицы выполняет молекула SO 3 , образующаяся в результате реакции: 2H 2 SO 4 « SO 3 +H 3 O + + HSO 4 - . Атомы серы в этой молекуле характеризуются сильным дефицитом электронной плотности и наличием частичного положительного заряда и, следовательно, именно атом S должен, как электрофил, связываться с атомом углерода бензольного кольца толуола.

Метильная группа в толуоле является ориентантом первого рода, и как электронодонорный заместитель облегчает реакцию замещения и направляет входящую группу в орто- и пара-положения. На практике образуются продукты замещения и в мета-положении, но их количество существенно меньше количеств продуктов замещения в орто- пара-положения.

Галогенирование бензола и многих ароматических соединений действием самого галогена протекает только в присутствии катализаторов, таких как ZnCl 2 , AlCl 3, FeBr 3 и т.д. Катализаторами обычно являются кислоты Льюиса . Между атомом металла и атомом галогена образуется связь по донорно-акцепторному механизму, что вызывает поляризацию молекулы галогена, усиливая ее электрофильный характер. Полученный аддукт может подвергаться диссоциации с образованием комплексного аниона и катиона галогена, выступающего далее в качестве электрофильной частицы:

В качестве галогенирующих средств могут применяться также водные растворы НО-Hal в присутствии сильных кислот. Образование электрофильной частицы в этом случае можно объяснить следующими реакциями:

Механизм дальнейшего взаимодействия катионов Br + или Cl + ничем не отличается от механизма нитрования катионами NO 2 + . Рассмотрим механизм реакции на примере бромирования анилина (ограничимся образованием монозамещенных продуктов). Как известно, анилин обесцечивает бромную воду, образуя в итоге 2,4,6-триброманилин, выделяющийся в виде белого осадка:

Образовавшаяся электрофильная частица атакует p-электроны бензольного кольца, образуя p-комплекс. Из возникшего p-комплекса образуются два основных s -комплекса, в которых связь углерод-бром возникает в орто- и пара-положениях цикла. На следующем этапе происходит отщепление протона, что приводит к образованию монозамещенных производных анилина. В избытке реагента эти процессы повторяются, приводя к образованию дибром- и трибромпроизводных анилина.

Алкилирование (замещение атома водорода на алкильный радикал) ароматических соединений осуществляется при их взаимодействии с галогеналканами (реакция Фриделя-Крафтса). Взаимодействие первичных алкилгалогенидов, например СН 3 Cl, с ароматическими соединениями в присутствии кислот Льюиса мало чем отличается по своему механизму от реакций галогенирования. Рассмотрим механизм на примере метилирования нитробензола. Нитрогруппа, как ориентант второго рода, дезактивирует бензольное кольцо в реакциях электрофильного замещения и направляет входящую группу в одно из мета-положений.

В общем виде уравнение реакции имеет вид:

Генерирование электрофильной частицы происходит в результате взаимодействия галогеналкана с кислотой Льюиса:

Образующийся метильный катион атакует p-электроны бензольного кольца, что приводит к образованию p-комплекса. Образовавшийся p-комплекс далее медленно превращается в s -комплекс (карбкатион), в котором связь между метильным катионом и атомом углерода цикла возникает главным образом в положениях 3 или 5 (т.е. в мета-положениях, в которых из-за электронных эффектов нитрогруппы возникают частичные отрицательные заряды). Завершающей стадией является отщепление протона от s -комплекса и восстановление сопряженной системы.

В качестве алкилирующих агентов при алкилировании бензола вместо алкилгалогенидов могут использоваться также алкены или спирты. Для образования электрофильной частицы - карбкатиона - необходимо наличие кислоты. Механизм реакции в этом случае будет отличаться лишь на стадии генерирования электрофильной частицы. Рассмотрим это на примере алкилирования бензола пропиленом и пропанолом-2:

Генерирование электрофильной частицы:

В случае использования в качестве реагента пропилена образование карбкатиона происходит в результате присоединения протона (по правилу Марковникова). При использовании в качестве реагента пропанола-2 образование карбкатиона происходит в результате отщепления молекулы воды от протонированного спирта.

Образовавшийся изопропильный катион атакует p-электроны бензольного кольца, что приводит к возникновению p-комплекса, который далее превращается в s- комплекс с нарушенной ароматичностью. Последующее отщепление протона ведет к регенерации ароматической системы:

Реакции ацилирования (замещения катиона Н + на ацильную группу R-C + =O) происходят аналогичным образом. Рассмотрим на примере реакции ацилирования метокисибензола, уравнение которой можно представить следующим образом:

Как и в предыдущих случаях, электрофильная частица генерируется в результате взаимодействия хлорангидрида уксусной кислоты с кислотой Льюиса:

Образующийся катион ацилия сначала образует p-комплекс, из которого возникают главным образом два s -комплекса, в которых формирование s- связи между циклом и электрофильной частицей происходит преимущественно в орто- и пара-положениях, так как в этих положениях возникают частичные отрицательные заряды из-за электронного влияния метоксигруппы.

Ароматические гетероциклы также вступают в реакции электрофильного замещения. При этом пятичленные гетероциклы - пиррол, фуран и тиофен - легче вступают в реакции S E , так как являются p-избыточными системами. Однако при проведении реакций с этими соединениями необходимо учитывать их ацидофобность. Нестабильность этих соединений в кислой среде объясняется нарушением ароматичности в результате присоединения протона.

При проведении реакций электрофильная частица замещает протон в a-положении; если оба a-положения заняты, то замещение протекает по b-положению. В остальном механизм реакций электрофильного замещения аналогичен рассмотренным выше случаям. В качестве примера приведем бромирование пиррола:

Механизм реакции с участием ароматических гетероциклов включает все рассмотренные выше стадии - генерирование электрофильной частицы, образование p-комплекса, превращение его в s- комплекс (карбкатион), отщепление протона, приводящее к образованию ароматического продукта.

При проведении реакций электрофильного замещения с участием p-дефицитных ароматических систем, таких как пиридин и пиримидин, нужно учитывать их изначально более низкую реакционную способность (дефицит p-электронной плотности затрудняет образование p-комплекса и его превращение в s- комплекс), которая еще сильнее снижается при проведении реакций в кислой среде. Хотя в кислой среде ароматичность этих соединений не нарушается, протонирование атома азота приводит к усилению дефицита p-электронной плотности в цикле.

Пиридин способен алкилироваться, сульфироваться, нитроваться, ацилироваться и галогенироваться. Однако в большинстве случаев с электрофильной частицей образует связь более нуклеофильный атом азота, а не атомы углерода пиридина.

В случае протекания реакции в пиридиновом цикле замещение идет по одному из b-положений, в которых возникают частичные отрицательные заряды.

Наиболее характерны для ароматических углеводородов реакции замещения . При этом в результате реакций не происходит разрушения ароматического секстета электронов. Известны также многочисленные примеры реакций радикального галогенирования и окисления боковых цепей алкилбензолов. Процессы, в которых разрушается стабильная ароматическая система, мало характерны.

IV.1 Электрофильное ароматическое замещение (seAr)

А . Механизм S E Ar (Substitution Electrophilic in Arenes)

Электрофильное замещение в ароматическом ядре является одной из наиболее хорошо изученных и широко распространенных органических реакций. Чаще всего, конечным результатом электрофильного замещения является замещение атома водорода в ароматическом ядре на другой атом или группу атомов:

Реакции электрофильного замещения в ароматическом ядре (как и реакции электрофильногоприсоединения к С=С связи) начинаются с образования -комплекса - электрофильный агент координируется с молекулой бензола за счет -электронной системы последнего:

В бензольном ядре -система, будучи устойчивой (энергия стабилизации; см. раздел II), не нарушается столь легко, как в алкенах. Поэтому соответствующий -комплекс может быть не только зафиксирован с помощью физико-химических методов, но и выделен .(прим.24)

Как правило, стадия образования -комплекса протекает быстро и не лимитирует скорости всего процесса.

Далее ароматическая система нарушается, и возникает ковалентная связь электрофила с атомом углерода бензольного ядра. При этом -комплекс превращается в карбокатион (карбениевый ион), в котором положительный заряд делокализован в диеновой системе, а атакованный электрофилом атом углерода переходит из sp 2 - в sp 3 -гибридное состояние. Такой катион называется -комплексом . Как правило, стадия образования -комплекса является скорость определяющей . Делокализация положительного заряда в -комплексе осуществляется не равномерно между пятью атомами углерода, а за счет 2,4,6-положений бензольного кольца (ср. с аллильным катионом, где положительный заряд распределен между 1,3-положениями):

При электрофильном присоединении к алкенам также сначала образуется -комплекс, переходящий затем в -комплекс, однако дальнейшая судьба -комплекса в случае электрофильных реакций алкенов и аренов различна. -Комплекс, образующийся из алкенов, стабилизируется за счет транс -присоединения нуклеофила; -комплекс, формирующийся из ароматической системы, стабилизируется с регенерацией ароматического секстета -электронов:(прим.25)

Ниже приведен энергетический профиль такой реакции (прим.27) (Е а - энергия активации соответствующей стадии):

Еще раз подчеркнем, что реакции S Е Ar, по результату представляющие собой замещение , на самом деле по механизму являются реакциями присоединения с последующим отщеплением .

Б. Ориентация присоединения в монозамещенных бензолах

При рассмотрении реакций электрофильного замещения в монозамещенных бензолах возникает две проблемы: 1. Новый заместитель может вступать в орто -, мета - илипара -положения, а также замещать уже имеющийся заместитель (последнее, так называемое ипсо-замещение , менее распространено - см. раздел IV.1.Д (нитрование). 2. Скорость замещения может быть больше или меньше скорости замещения в бензоле.

Влияние имеющегося в бензольном кольце заместителя можно объяснить исходя из его электронных эффектов. По этому признаку заместители можно разделить на 3 основных группы:

1. Заместители, ускоряющие реакцию по сравнению с незамещенным бензолом (активирующие ) и направляющие замещение в орто ,- пара - положения.

2. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в орто,-пара- положения .

3. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в мета - положения .

Заместители, отмеченные в п.п. 1,2 (орто-,пара-ориентанты ) называются заместителями I-го рода ; отмеченные в п.3 (мета-ориентанты ) - заместителями II-го рода . Ниже приведено отнесение обычно встречающихся заместителей в соотвествие с их электронными эффектами.

Очевидно, что электрофильное замещение будет происходить тем быстрее, чем более электронодонорным является заместитель в ядре , и тем медленнее, чем более электроноакцепторным является заместитель в ядре .

Для объяснения ориентации замещения рассмотрим строение -комплексов при атаке в орто -, мета - и пара -положения монозамещенного бензола (как уже отмечалось, образование -комплексов обычно является скоростьопределяющей стадией электрофильного замещения; cледовательно, легкость их образования должна определять легкость протекания замещения в данное положение):

Если группа Z - донор электронов (неважно, индуктивный или мезомерный), то при орто - или пара -атаке она может принимать непосредственное участие в делокализации положительного заряда в -комплексе (структуры III, IV, VI, VII). Если же Z - акцептор электронов, то указанные структуры будут энергетически невыгодными (из-за наличия частичного положительного заряда на атоме углерода, связанном с электроноакцепторным заместителем) и в этом случае оказывается предпочтительной мета-атака, при которой не возникает таких структур.

Приведенное выше объяснение дано на основании так называемого динамического эффекта , т.е. распределения электронной плотности в реагирующей молекуле. Ориентацию электрофильного замещения в монозамещенных бензолах можно объяснить и с позиции статических электронных эффектов - распределения электронной плотности в нереагирующей молекуле. При рассмотрении смещения электронной плотности по кратным связям можно заметить, что при наличии электронодонорного заместителя более всего повышена электронная плотность в орто - и пара - положениях, а при наличии электроноакцепторного заместителя эти положения наиболее обеднены электронами:

Особый случай представляют собой галогены - будучи заместителями в бензольном ядре, они дезактивируют его в реакциях электрофильного замещения, однако являютсяорто -, пара -ориентантами. Дезактивация (снижение скорости реакции с электрофилами) связана с тем, что, в отличие других группировок с неподеленными электронными парами (таких как -OH, -NH 2 и т.п.), обладающих положительным мезомерным (+М) и отрицательным индуктивным эффектом (-I), для галогенов характерно преобладание индуктивного эффекта над мезомерным (+М< -I).(прим.30)

В то же время, атомы галогенов являются орто,пара -ориентантами, поскольку способны за счет положительного мезомерного эффекта участвовать в делокализации положительного заряда в -комплексе, образующемся при орто - или пара - атаке (структуры IV, VII в приведенной выше схеме), и тем самым снижают энергию его образования.

Если в бензольном ядре имеется не один, а два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В первом случае можно рассчитывать на преимущественное образование каких-то определенных изомеров, а во втором будут получаться сложные смеси.(прим.31)

Ниже приведены некоторые примеры согласованной ориентации двух заместителей; место преимущественного вступления третьего заместителя показано стрелкой.

Спрос на бензол определяется развитием потребляющих его отраслей. Основные области применения бензола - производство этилбензола, кумола и циклогексана и анилина.

Общий вид реакций электрофильного замещения:

R − X + Y + → R − Y + X + {\displaystyle {\mathsf {R\!\!-\!\!X+Y^{+}}}\rightarrow {\mathsf {R\!\!-\!\!Y+X^{+}}}} (катионный электрофил)

R − X + Y − Z → R − Y + X − Z {\displaystyle {\mathsf {R\!\!-\!\!X+Y\!\!-\!\!Z}}\rightarrow {\mathsf {R\!\!-\!\!Y+X\!\!-\!\!Z}}} (нейтральный электрофил)

Выделяют реакции ароматического (широко распространены) и алифатического (мало распространены) электрофильного замещения. Характерность реакций электрофильного замещения именно для ароматических систем объясняется высокой электронной плотностью ароматического кольца, способного притягивать положительно заряженные частицы.

Реакции ароматического электрофильного замещения играют крайне важную роль в органическом синтезе и широко используются как в лабораторной практике, так и промышленности.

Энциклопедичный YouTube

    1 / 5

    ✪ Электрофильное Ароматическое Замещение

    ✪ Механизм электрофильного ароматического замещения

    ✪ Алкены. Механизм реакции электрофильного присоединения.

    ✪ Механизмы химических реакций. Ч.2. Классификация механизмов. Электрофильные и нуклеофильные реакции.

    ✪ Классификация реакций: нуклеофилы, электрофилы, радикалы

    Субтитры

    Мы с вами уже говорили о бензольном кольце. Так, я плохо его нарисовал, давайте я его перерисую. Итак, мы уже обсуждали, что стабильность бензола связана с его ароматичностью. Вот эти электроны на этих π-орбиталях, формирующие двойные связи, принадлежат не только этим связям. Они находятся в постоянном движении. Этот может пойти сюда. Этот - сюда. А этот - вот сюда. Электроны не просто перемещаются туда-сюда. Они «циркулируют» по всему кольцу. Таким образом, ароматическая молекула оказывается более стабильной. Мы уже видели примеры ароматических соединений или, правильнее сказать, мы видели примеры бензольного кольца с введенными заместителями, галоген заместителями или же OH-группой. В этом видеоуроке мне хотелось бы подробнее рассмотреть, как можно присоединить заместитель к бензольному кольцу. Сегодня мы будем изучать электрофильное ароматическое замещение. Давайте запишем. Электрофильное ароматическое замещение. Вы можете справедливо заметить: «Сэл, ты сказал, что ты добавляешь заместители». Но в действительности у бензола уже есть шесть атомов водорода. Здесь один водород, два водорода, три водорода, четыре водорода, пять водородов и, наконец, шесть водородов. Они всегда есть у бензола. И, даже не рисуя их, мы их подразумеваем. Когда мы добавляем хлор или же бром, или же OH-группу, то мы замещаем их на один из атомов водорода. Потому это называется «замещением». А «ароматическое», потому что мы имеем дело с бензольным кольцом. Итак, мы будем рассматривать ароматическую молекулу и мы увидим, что чтобы замещение прошло, нам понадобится очень сильный электрофил. Давайте попробуем представить, как это произойдет. Но прежде позвольте я скопирую и вставлю рисунок, чтобы его не перерисовывать. Давайте скопируем его. Допустим, у нас есть действительно сильный электрофил. В следующем видеоуроке мы рассмотрим несколько конкретных примеров, чтобы вы понимали, что такое сильный электрофил. Но, думаю, слово «электрофил» уже само по себе наводит на мысль, что это что-то, что любит электроны. Электрофил хочет заполучить электроны очень, очень и очень сильно. И обычно у электрофила положительный заряд. Итак, он требует электроны. Давайте немного проясним этот момент. Не будем писать, что электрофилу нужны электроны. Потому что, когда мы говорим об электрофилах или нуклеофилах, то мы имеем в виду их реакционную способность. Запишем это по-другому: принимает электроны. Действительно очень, очень и очень хорошо принимает электроны. Что же произойдет? Как мы уже сказали, бензол это стабильная молекула. Вот эти электроны, эти π-электроны постоянно циркулируют. Что же произойдет, если такая молекула столкнется определенным образом с молекулой электрофила? Давайте обозначим вот этот электрон здесь. Как видно из рисунка, он находится у этого атома углерода. Я думаю, это понятно, что углерод находится здесь. Хотя толком я его и не нарисовал. Но если этот, хорошо принимающий электроны электрофил, столкнется определенным образом с бензолом, то этот электрон перейдет к электрофилу. Итак, таким образом… Давайте я просто скопирую и вставлю первоначальную молекулу. Итак, что же теперь изменилось? Вот этой связи у нас больше нет. Этот углерод теперь связан с электрофилом. Проясним это. Этот электрон раньше был тут. Этот электрон по-прежнему принадлежит этому углероду, а другой электрон переходит к электрофилу, который с удовольствием забирает его себе. Итак, теперь этот электрон принадлежит электрофилу. Электрофил, таким образом, получил электрон. До этого он был положительно заряжен, а теперь нейтрально. Повторюсь, что конкретные примеры мы рассмотрим в следующих видеоуроках. Вернемся к замещению. Эту связь мы теперь наблюдаем вот тут. Этот атом углерода вот тут потерял электрон. И поскольку он потерял электрон, на нем появится положительный заряд. На самом деле проделать такое с резонансно-стабилизированной молекулой не просто. Поэтому, как я уже неоднократно говорил, участвовать в реакции должен действительно сильный электрофил. Стоит отметить, что получившийся карбокатион относительно стабилен. И, несмотря на то, что это всего лишь вторичный карбокатион, он оказывается стабильным благодаря резонансу. Этот электрон может перейти к карбокатиону. Если это произойдет, мы получим вот что. Давайте перерисуем кольцо. Нарисуем резонансные структуры как можно быстрее. Здесь у нас водород. Здесь электрофил. Вообще-то, это больше не электрофил, просто обозначаем этот заместитель буквой «E». Здесь водород. Здесь двойная связь. Давайте нарисуем ее немного аккуратнее. Здесь у нас водород. Здесь водород, здесь водород и вот тут. И я сказал, что эта структура стабилизирована. Электрон отсюда может перепрыгнуть сюда. Если этот электрон перейдет вот сюда, то двойная связь теперь окажется здесь. Еще раз. Электрон перейдет сюда и двойная связь теперь тут. Этот атом углерода отдал свой электрон и теперь он положительно заряжен. Вот почему такая структура оказывается резонансно-стабилизированной. Электрон может вернуть нас к предыдущей структуре, а может сам перескочить вот сюда. Давайте я опять перерисую все это. Нарисуем сразу все атомы водорода. Вот здесь у нас заместитель и атом водорода. Еще водород здесь, еще здесь, здесь и здесь. Обычно столько внимания водородам не уделяют, но поскольку один из этих атомов будет отщепляться в процессе механизма, в данном случае я предпочитаю их обозначить, чтобы не забыть, что атомы водорода здесь есть. Вернемся к резонансной стабилизации. Если это электрон перейдет сюда, тогда эта двойная связь окажется здесь. Этот атом углерода потерял электрон и теперь несет положительный заряд. Вот эту двойную связь, которая была здесь сверху, рисуем там же, где она и была. Мы можем переходить от одной структуры к другой. Электроны постоянно перемещаются по кольцу. Безусловно, мы говорим не о такой сильной стабилизации, если бы эта молекула была полностью ароматической. Электроны перемещались по π-орбиталям снова и снова, тем самым стабилизируя структуру. Но этот карбокатион все равно относительно стабилен благодаря «циркуляции» электронов по кольцу. Мы также можем считать, что этот положительный заряд «размазывается» между этим углеродом, этим углеродом и вот этим углеродом. Тем не менее, стабильности этому соединению не хватает. Молекула вновь хочет стать ароматической, вернуть себе стабильное состояние. И для того, чтобы вернуться в стабильное состояние, карбокатиону нужно каким-то образом получить электрон. Способ, с помощью которого карбокатион может заполучить электрон, заключается в том, чтобы основание из окружающей среды отщепило этот протон, протон атома углерода, который также связан с электрофилом. Итак, это основание отщепляет протон. Мы говорим только про ядро водорода, так как электрон водорода остается здесь. Давайте нарисуем это другим цветом. Точнее, это электрон, который был у водорода, теперь он переходит к атому углерода вот сюда. Такое пересечение линий выглядит немного запутанно. Электрон может перейти к этому углероду. Что же мы тогда получим? А получим мы вот что. Итак, если это произойдет… Давайте нарисуем желтым наше шестичленное кольцо. Теперь нарисуем все водороды. Какой бы цвет выбрать? Давайте нарисуем их вот таким зеленым. Итак, рисуем все атомы водорода. Теперь давайте не будем спешить. Вот этот водород, точнее только его ядро, отщепило основание. Таким образом, атом водорода перешел к основанию. Вот этот электрон был передан атому водорода. Итак, один электрон перешел к этому водороду, а второй электрон по-прежнему принадлежит основанию. Мы получили сопряженную основанию кислоту, другими словами, основание, которое получило протон. А этот атом углерода теперь соединен только с заместителем, который был раньше нашим электрофилом. Давайте для простоты нарисуем это одним цветом. То, что раньше было электрофилом находится вот здесь, а эта связь соответствует этой связи. Осталось немного. Будем придерживаться одних и тех же цветов. Эта двойная связь соответствует этой двойной связи. У нас есть эта двойная связь. Эта двойная связь, которую мы теперь рисуем здесь. И затем этот электрон вернется к верхнему атому углерода. Давайте расставим все по полочкам. Эта связь и этот электрон возвращаются к этому верхнему углероду. Давайте нарисуем связь и электрон, которые вернулись на свои места. Этот верхний углерод перестает быть положительно заряженным. И мы опять получаем резонансно-стабилизированную структуру. Я забыл упомянуть про заряды. Могло случиться так, что это основание было отрицательно заряжено. Хотя совсем не обязательно. Но, если у этого основания был отрицательный заряд, то после того, как оно отдаст свой электрон водороду, отрицательный заряд пропадет. В этом есть своя логика, потому что сначала у нас были как положительные, так и отрицательные заряды, а после того, как все прореагировало заряды пропали. Суммарный заряд равен нулю. Вернемся к вопросу электрофильного ароматического замещения. Мы заместили один из этих водородов. Мы заместили этот водород вот здесь с помощью электрофила. То, что раньше было электрофилом, после того, как получило электрон, теперь является просто заместителем, присоединенным к бензольному кольцу. И, пройдя весь этот сложный путь, мы, наконец, пришли к новой ароматической молекуле с E-заместителем. В следующем видеоуроке мы рассмотрим конкретные примеры электрофилов и оснований. Subtitles by the Amara.org community

Реакции ароматического электрофильного замещения

Для ароматических систем фактически существует один механизм электрофильного замещения - S E Ar . Механизм S E 1 (по аналогии с механизмом S N 1 ) - встречается крайне редко, а S E 2 (соответствующий по аналогии S N 2 ) - не встречается вовсе .

Реакции S E Ar

Механизм реакции S E Ar или реакции ароматического электрофильного замещения (англ. Electrophilic aromatic substitution ) является самым распространенным и наиболее важным среди реакций замещения ароматических соединений и состоит из двух стадий. На первом этапе происходит присоединение электрофила, на втором - отщепление электрофуга:

Скорость реакции = k**

В качестве атакующей частицы обычно выступают относительно слабые электрофилы, поэтому в большинстве случаев реакция S E Ar протекает под действием катализатора - кислоты Льюиса. Чаще других используются AlCl 3 , FeCl 3 , FeBr 3 , ZnCl 2 .

В этом случае механизм реакции выглядит следующим образом (на примере хлорирования бензола , катализатор FeCl 3) :

1.На первом этапе катализатор взаимодействует с атакующей частицей с образованием активного электрофильного агента:

C l − C l + F e C l 3 ⇄ C l − C l + ⋅ ⋅ ⋅ F e C l 3 − ⇄ C l + F e C l 4 − {\displaystyle {\mathsf {Cl\!\!-\!\!Cl+FeCl_{3}}}\rightleftarrows {\mathsf {Cl\!\!-\!\!Cl^{+}}}\!\cdot \cdot \cdot {\mathsf {FeCl_{3}^{-}}}\rightleftarrows {\mathsf {Cl^{+}FeCl_{4}^{-}}}}

2. На втором этапе, собственно, и реализуется механизм S E Ar :

H N O 3 + 2 H 2 S O 4 → N O 2 + + H 3 O + + 2 H S O 4 − {\displaystyle {\mathsf {HNO_{3}+2H_{2}SO_{4}}}\rightarrow {\mathsf {NO_{2}^{+}+H_{3}O^{+}+2HSO_{4}^{-}}}}

Скорость реакции = k**

X 2 + F e X 3 → X + + F e X 4 − {\displaystyle {\mathsf {X_{2}+FeX_{3}}}\rightarrow {\mathsf {X^{+}+FeX_{4}^{-}}}}

В замещенных бензолах возможна так называемая ипсо -атака, то есть замещение имеющегося заместителя на другой:

Реакции алифатического электрофильного замещения

Реакции S E 1

Механизм реакции S E 1 или реакции мономолекулярного электрофильного замещения (

Реакции электрофильного замещения протекают труднее, чем у бензола, что обусловлено сильным электроноакцепторным действием нитрогруппы. Замещение происходит в мета-положение, так как нитрогруппа – ориентант П рода (S E 2 аром).

Поэтому реакции электрофильного замещения осуществляются только с сильными реагентами (нитрование, сульфирование, галогенирование) в более жестких условиях:

  1. Реакции нуклеофильного замещения

В реакциях нуклеофильного замещения (S N 2 аром) нитрогруппа направляет нуклеофил в орто- и пара-положения.

Например, сплавление нитробензола с КОН при 100 0 С приводит к получению орто- и пара-нитрофенолов:

Более предпочтительной является атака в орто-положение, поскольку отрицательный индуктивный эффект нитрогруппы, действуя на малом расстоянии, создает большую нехватку электронов в орто-, чем в пара-положении.

Присутствие двух и особенно трех нитрогрупп в мета-положении по отношению друг к другу еще более способствует реакциям с нуклеофильными реагентами.

Так, например, при взаимодействии мета-динитробензола со щелочью или с амидом натрия происходит замещение одного из атомов водорода, находящихся в орто- или пара-положениях, на группу OH, или наNH 2 :

2,4-динитрофенол

2,6-динитроанилин

Симметричный тринитробензол реагирует со щелочью с образованием пикриновой кислоты:

2,4,6-тринитрофенол

пикриновая кислота

  1. Влияние нитрогруппы на реакционную способность

других групп в бензольном кольце

    Нуклеофильное замещение нитрогруппы

Если нитрогруппы находятся в орто- и пара-положениях по отношению друг к другу, то они активируют друг друга и возможно нуклеофильное замещение нитрогруппы с уходом нитрит-иона:

    Нуклеофильное замещение галогенов и других групп

Нитрогруппа активирует нуклеофильное замещение не только атома водорода, но и других групп, находящихся в бензольном кольце в орто- и пара-положениях относительно нитрогруппы.

Легко замещаются на нуклеофилы атомы галогенов, -ОН, -OR, –NR 2 и другие группы.

Роль нитрогруппы заключается не только в создании положительного заряда на атоме углерода, связанном с замещаемой группой, но и в стабилизации отрицательного ϭ-комплекса, т.к. нитрогруппа способствует делокализаии отрицательного заряда.

Например, галоген в орто- и пара-нитрохлорбензолах под влиянием нитрогруппы легко замещается на нуклеофильные частицы:

:Nu: -- = ОН -- , NH 2 -- , I -- , -- OCH 3

Присутствие двух и особенно трех нитрогрупп ускоряет нуклеофильное замещение, причем наиболее ярко это выражено в тех случаях, когда нитрогруппы находятся в орто- или пара-положении относительно замещаемой группы:

2,4-динитрохлорбензол

Наиболее легко атом галогена замещается в 2,4,6-тринитрохлорбензоле (пикрилхлорид):

2,4,6-тринитрохлорбензол

(пикрилхлорид)

    Реакции, связанные с подвижностью атомов водорода

алкильных радикалов

Благодаря сильно выраженному электроноакцепторному характеру нитрогруппа оказывает значительное влияние на подвижность атомов водорода алкильных радикалов, нахоящихся в орто- и пара-положениях по отношению к ней.

а) реакции конденсации с альдегидами

В пара-нитротолуоле атомы водорода метильной группы под влиянием нитрогруппы приобретают высокую подвижность и вследствие этого пара-нитротолуол вступает в реакции конденсации с альдегидами в качестве метиленового компонента:

б) образование нитроновых кислот

Атомы водорода у α-углеродного атома благодаря ϭ,π-сопряжению обладают высокой подвижностью и могут мигрировать к кислороду нитрогруппы с образованием таутомерной нитроновой кислоты.

Образование нитроновых кислот у ароматических нитросоединений с нитрогруппой в кольце связано с преобразованием бензольного кольца в хиноидную структуру:

Например, орто-нитротолуол проявляет фотохромизм: образуется нитроновая кислота ярко-синего цвета (хиноидные структуры часто интенсивно окрашены:

орто-нитротолуол нитроновая кислота

Замечание 1

Самой важной группой реакций для ароматических соединений являются реакции электрофильного замещения. Поскольку ароматическое кольцо притягивает электрофильные, а не нуклеофильные частицы, то реакции по этому проходят легко и широко используются как в лабораторном, так и в промышленном синтезе.

Данный процесс заключается в замещении одной электрофильной частицы (обычно - протона) другой электронно-дефицитной частью. В этой реакции используют разнообразные электрофильные реагенты обозначаемые символом $E^+$, и она является путем получения многих замещенных ароматических соединений. Более того, когда эту реакцию применяют к производным бензола, уже содержащим один или более заместитель, для процесса характерно явление региоселективности (специфичности и направленности замещения), а также выборочная реакционная способность, которые объясняются теорией.

Типы механизмов электрофильного ароматического замещения

Для электрофильного ароматического замещения предполагается два механизма идущих по альтернативным направлениям:

Механизм одностадийного бимолекулярного замещения типа $S_E2$

По данному механизму в конфигурация в ароматическом секстете $\pi$-электронов в ходе реакций сохраняется, и процесс замещения происходит путем взаимодействий НСМО электрофилов с ВЗМО связями ароматических соединей $C - H$:

Рисунок 2.

В переходных состояниях образуются трехцентровые двухэлектронные связи между $C-H$ и теми атомами электрофилов $E^+$, на которых плотность НСМО велика. Образование трехцентровых переходных состояний $(I)$ не вызывает теоретических возражений. Двухэлектронные трехцентровые фрагменты в этих переходных состояниях изоэлектроннв ароматическим $\pi$-системам циклопропенильных катионов, которые ароматичны. Значит, переходные состояния $(I)$ будут «ароматичными», т. е. не слишком высокими по энергии.

Механизм SE-аренониевого электрофильного замещения

Второму механизму было дано название $S_E(Ar)$ - $S_E$-аренониевое электрофильное замещение. По этому механизму ароматичность и шестиэлектронная система в интермедиатах исчезает, они заменяются на нециклические четырехэлектронные сопряженные системы пентадиенильных катионов $(C=C-C=C-C^+)$, а на второй стадии ароматические системы вновь восстанавливаются в результате отщеплений протонов. Атака НСМО электрофилов происходит не на $\sigma$-орбиталям связей, а на $\pi$- ВЗМО, поэтому взаимодействия граничных МО можно представить в виде двух альтернативных схемам:

Рисунок 3.

Однако в монозамещенном бензоле $C_6H_5X$ вырождение снимается. Так например, в феноле или анилине ВЗМО имеют форму (а). Строение аренониевых ионов $(II)$ можно изобразить различными способами:

Рисунок 4.

Наиболее часто употребляют первую формулу, однако и другие приведенные схематические формулы также актуальны. Используя эти альтернативные формулы можно показать, что положительные заряды аренониевых ионов в основном находятся в орто - и пара - положении к геминальным узлам циклогексадиенильных катионов. И поэтому $\sigma$-комплексы будут стабилизироваться донорными заместителями , которые находятся в орто - и пара - положениих, гораздо лучше, чем донорными заместителями в мета- положении. Если переходные состояния медленных стадий электрофильного замещения похожи на аренониевые ионы, то (+М)-заместитель будет направлять электрофил в пара - и орто - положение, т. е. реакция будет региоселективной.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то