Уравнение горения алкенов в общем виде. Основные реакции алкенов. Изомерия и номенклатура алкенов

Алкены — это непредельные углеводороды , которые имеют одну двойную связь между атомами . Другое их название это олефины, оно связано с историей открытия этого класса соединений. В основном в природе эти вещества не встречаются, а синтезируются человеком для практических целей. В номенклатуре ИЮПАК название этих соединений формируется по тому же принципу, что и для алканов, только суффикс “ан” заменяется на “ен”.

Вконтакте

Строение алкенов

Два атома углерода, участвующих в образовании двойной связи, всегда находятся в sp2 гибридизации, и угол между ними равен 120 градусам. Двойная связь образована с помощью перекрывания π -π орбиталей, а оно не очень прочное, поэтому данную связь достаточно просто разорвать, что находит применение в химических свойствах веществ.

Изомерия

По сравнению с предельными, в этих углеводородах возможно больше видов , при том как пространственной, так и структурной. Структурная изомерия может также подразделяться на несколько видов.

Первый также существует и для алканов, и заключается в различном порядке соединения атомов углерода. Так изомерами могут быть пентен-2 и 2-метилбутен-2. А второй — это изменение положения двойной связи.

Пространственная изомерия в этих соединениях возможна благодаря появлению двойной связи. Она бывает двух видов — геометрической и оптической.

Геометрическая изомерия — один из самых распространенных в природе видов, при том практически всегда геометрические изомеры будут иметь кардинально разные физические и химические свойства. Различают цис и транс изомеры. У первых — заместители располагаются с одной стороны от кратной связи, а у транс изомеров они находятся в разных плоскостях.

Получение алкенов

Впервые получены они были, как и много других веществ, совершенно случайно.

Немецкий химик и исследователь Бехер в конце 17 века изучал действие серной кислоты на этиловый спирт и понял, что получил неизвестный газ , который при этом является более реакционноспособным, чем метан.

Позже подобные исследования провели еще несколько ученых, они же и узнали, что данный газ при взаимодействии с хлором образует маслянистое вещество.

Поэтому первоначально этому классу соединений было присвоено название олефины, что переводится как маслородный. Но все же определить состав и строение данного соединения у ученых не получалось. Это произошло только почти спустя два века, в конце девятнадцатого столетия.

В настоящее время существует много способов получения алкенов.

Промышленные способы

Получение промышленными методами :

  1. Дегидрирование предельных углеводородов. Данная реакция возможна только при действии высоких температур (около 400 градусов) и катализаторов — либо оксида хрома 3, либо алюмоплатиновых катализаторов.
  2. Дегалогенирование дигалогеноалканов. Происходит только в присутствии цинка или магния, и при высоких температурах.
  3. Дегидрогалогенирование галогеноалканов. Проводится при помощи натриевых или калиевых солей органических кислот при повышенной температуре.

Важно ! Данные способы получения алкенов не дают чистого продукта, результатом реакции будет смесь непредельных углеводородов. Преобладающее среди них соединение определяется с помощью правила Зайцева. Оно гласит, что водород отщепляется с наибольшей вероятностью от атома углерода у которого меньше всего связей с водородами.

Дегидратация спиртов. Может проводиться только при нагревании и в присутствии растворов сильных минеральных кислот, обладающих водоотнимающим свойством.

Гидрирование алкинов. Возможно только в присутствии паладиевых катализаторов.

Химические свойства алкенов

Алкены являются очень химически активными веществами. Во многом это объясняется благодаря наличию двойной связи. Самыми характерными реакциями для этого класса соединений являются электрофильное и радикальное присоединение.

  1. Галогенирование алкенов — относится к классическим реакциям электрофильного присоединения. Она происходит только в присутствии инертных органических растворителей, чаще всего это тетрахлорметан.
  2. Гидрогалогенирование. Присоединение этого типа осуществляется по правилу Марковникова. Ион присоединяется к более гидрированному атому углерода возле двойной связи, и соответственно, ион галогенида присоединяется ко второму атому углерода. Это правило нарушается в присутствии перекисных соединений — эффект Харроша. Присоединение галогеноводорода происходит полностью обратно правилу Марковникова.
  3. Гидроборирование. Эта реакция имеет значительную практическую важность. Поэтому ученый, который ее открыл и изучил даже получил Нобелевскую премию. Данная реакция проводится в несколько ступеней, при этом присоединение иона бора происходит не по правилу Марковникова.
  4. Гидратация алкенов или присоединение . Данная реакция также протекает согласно правилу Марковникова. Гидроксид-ион присоединяется к наименее гидрированному атому углерода при двойной связи.
  5. Алкилирование — еще одна реакция часто применяемая в промышленности. Она заключается в присоединении предельных углеводородов к непредельным под воздействием низких температур и катализаторов, с целью увеличения атомной массы соединений. Катализатором чаще всего выступают сильные минеральные кислоты. Также эта реакция может протекать и по свободнорадикальному механизму.
  6. Полимеризация алкенов — еще одна нехарактерная для предельных углеводородов реакция. Она подразумевает соединение между собой многочисленных молекул с целью образования прочного соединения, отличающегося по своим физическим свойствам.

n в данной реакции это количество молекул, вступивших в связь. Обязательным условием осуществления является кислая среда, повышенная температура и увеличенное давление.

Также для алкенов характерны и другие реакции электрофильного присоединения, которые не получили такого обширного практического распространения.

Например, реакция присоединения спиртов, с образованием простых эфиров.

Или присоединение хлорангидридов, с получением непредельных кетонов — реакция Кондакова.

Обратите внимание! Данная реакция возможна только в присутствии катализатора хлорида цинка.

Следующий крупный класс реакций характерный для алкенов это реакции радикального присоединения. Данные реакции возможны только при образовании свободных радикалов под воздействием высоких температур, облучения и других действий. Самая характерная реакция радикального присоединения это гидрирование с образованием предельных углеводородов. Она происходит исключительно под воздействием температур и в присутствии платинового катализатора.

Благодаря наличию двойной связи, для алкенов очень характерными являются различные реакции окисления .

  • Горение — классическая реакция окисления. Она хорошо идет без катализаторов. В зависимости от количества кислорода возможны разные конечные продукты: от углекислого газа и до углерода.
  • Окисление перманганатом калия в нейтральной среде. Продуктами являются многоатомные спирты и бурый осадок диоксида марганца. Данная реакция считается качественной для алкенов.
  • Также мягкое окисление может осуществляться пероксидом водорода, оксидом осмия 8, и другими окислителями в нейтральной среде. Для мягкого окисления алкенов характерен разрыв только одной связи, продуктом реакции, как правило, являются многоатомные спирты.
  • Также возможно и жесткое окисление, при котором происходит разрыв обеих связей и образуются кислоты или кетоны. Обязательным условием является кислая среда, чаще всего используют серную кислоту, так как другие кислоты могут также подвергаться окислению с образованием побочных продуктов.

Физические свойства алкенов

Газами в нормальных условиях являются только этилен, пропен и бутен.

Начиная с пентена, и до гептодецена, все алкены находятся в жидком состоянии.

И все остальные являются твердыми веществами.

Температуры плавления и кипения пропорционально увеличиваются с ростом молекулярной массы, но могут меняться для изомеров.

Все алкены не растворяются в воде , но хорошо растворяются в инертных органических растворителях.

Применение алкенов

Алкены довольно широко используются в промышленности и применяются для синтеза большого количества веществ. Например, при помощи этилена синтезируют поливинилхлорид(ПВХ), стирол, этиленгликоль, этанол, полиэтилен, каучуки и множество других веществ. Наибольший объем пропилена используют для получения полипропилена.

Алкены — строение, свойства, применение

Изучаем химию — свойства алкенов, применение в промышленности

Вывод

В общем, можно точно сказать, что алкены благодаря своим химическим свойствам являются очень востребованными в промышленности. Они участвуют в производстве самых разнообразных пластмасс, каучуков и множества других веществ.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения. Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны. Алкены легко вступают в реакции окисления, присоединения а также способны к алильному радикальному замещению.

Реакции присоединения

    Гидрирование Присоединение водорода (реакция гидрирования) к алкенам проводят в присутствии катализаторов. Чаще всего используют измельченные металлы - платину, никель, палладий и др. В результате образуются соответствующие алканы (насыщенные углеводороды).

    $CH_2=CH_2 + H2 → CH_3–CH_3$

    Присоединение галогенов. Алкены легко при обычных условиях вступают в реакции с хлором и бромом с образованием соответствующих дигалогеналканов, в которых атомы галогена находятся у соседних атомов углерода.

    Замечание 1

    При взаимодействии алкенов с бромом наблюдается обесцвечивание желто-бурой окраски брома. Это одна из старейших и самых простых качественных реакций на ненасыщенные углеводороды, поскольку аналогично реагируют также алкины и алкадиены.

    $CH_2=CH_2 + Br_2 → CH_2Br–CH_2Br$

    Присоединение галогеноводородов. При взаимодействии этиленовых углеводородов с галогеноводородами ($HCl$, $HBr$) образуются галогеналканы, направление реакции зависит от строения алкенов.

    В случае этилена или симметричных алкенов реакция присоединения происходит однозначно и ведет к образованию только одного продукта:

    $CH_2=CH_2 + HBr → CH_3–CH_2Br$

    В случае несимметричных алкенов возможно образование двух разных продукта реакции присоединения:

    Замечание 2

    На самом деле в основном образуется только один продукт реакции. Закономерность направлении прохождения таких реакций установил российский химик В.В. Марковников в 1869 Она носит название правило Марковникова. При взаимодействии галогеноводородов с несимметричными алкенами атом водорода присоединяется по месту разрыва двойной связи в наиболее гидрированного атома углерода, то есть до того, что соединен с большим количеством атомов водорода.

    Данное правило Марковников сформулировал на основе экспериментальных данных и только значительно позже оно получило теоретическое обоснование. Рассмотрим реакцию пропилена с хлористым водородом.

    Одной из особенностей $p$-связи является его способность легко поляризоваться. Под влиянием метильной группы (положительный индуктивный эффект + $I$) в молекуле пропена электронная плотность $p$-связи смещается к одному из атомов углерода (= $CH_2$). Вследствие этого на нем возникает частичный отрицательный заряд ($\delta -$). На другом атоме углерода двойной связи в соответствии возникает частичный положительный заряд ($\delta +$).

    Такое распределение электронной плотности в молекуле пропилена определяет место будущей атаки протоном. Это - атом углерода метиленовой группы (= $CH_2$), который несет частичный отрицательный заряд $\delta-$. А хлор, соответственно, атакует атом углерода с частичным положительным зарядом $\delta+$.

    Как следствие, основным продуктом реакции пропилена с хлористым водородом является 2-хлорпропан.

    Гидратация

    Гидратация алкенов происходит в присутствии минеральных кислот и подчиняется правилу Марковникова. Продуктами реакции являются спирты

    $CH_2=CH_2 + H_2O → CH_3–CH_2–OH$

    Алкилирование

    Присоединение алканов к алкенам в присутствии кислотного катализатора ($HF$ или $H_2SO_4$) при низких температурах приводит к образованию углеводородов с большей молекулярной массой и часто используется в промышленности для получения моторного топлива

    $R–CH_2=CH_2 + R’–H → R–CH_2–CH_2–R’$

Реакции окисления

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета:

Реакции полимеризации

Молекулы алкенов способны присоединяться при определенных условиях друг к другу с раскрытием $\pi$-связей и образования димеров, триммеров или высокомолекулярных соединений - полимеров. Полимеризация алкенов может протекать как по свободнорадикальному, так и катионно-анионому механизму. Как инициаторы полимеризации применяют кислоты, перекиси, металлы и др. Реакцию полимеризации осуществляют также под действием температуры, облучения, давления. Типичным примером является полимеризация этилена с образованием полиэтилена

$nCH_2=CH_2 → (–CH_2–CH_{2^–})_n$

Реакции замещения

Реакции замещения для алкенов не являются характерными. Однако при высоких температурах (свыше 400 ° C) реакции радикального присоединения, что носят обратимый характер, и подавляются. В этом случае становится возможным провести замещение атома водорода, находящегося в аллильном положении при сохранении двойной связи

$CH_2=CH–CH_3 + Cl_2 – CH_2=CH–CH_2Cl + HCl$

Гипермаркет знаний >>Химия >>Химия 10 класс >> Химия: Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины , алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалке-ны), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов - алканов.

Строение

Алкены - ациклические , содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С n Н 2n .

Свое второе название - «олефины» - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел (от англ. oil - масло).

Атомы углерода, между которыми имеется двойная связь, как вы знаете, находятся в состоянии sp 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию а-связи, а за счет негибридизованных -орбиталей соседних молекулы этилена атомов углерода образуется вторая, п -связь. Таким образом, двойная связь состоит из одной Þ- и одной п-связи.

Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие л-связь, располагаются перпендикулярно плоскости молекулы (см. рис. 5).

Двойная связь (0,132 нм) короче одинарной, а ее энергия больше, т. е. она является более прочной. Тем не менее наличие подвижной, легко поляризуемой 7г-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Гомологический ряд этена

Неразветвленные алкены составляют гомологический ряд этена (этилена).

С2Н4 - этен, С3Н6 - пропен, С4Н8 - бутен, С5Н10 - пентен, С6Н12 - гексен и т. д.

Изомерия и номенклатура

Для алкенов, так же как и для алканов, характерна структурная изомерия. Структурные изомеры, как вы помните, отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры , - это бутен.

СН3-СН2-СН=СН2 СН3-С=СН2
l
СН3
бутен-1 метилпропен

Особым видом структурной изомерии является изомерия положения двойной связи:

СН3-СН2-СН=СН2 СН3-СН=СН-СН3
бутен-1 бутен-2

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис-транс-изомерии.

Цис-изомеры отличаются от торакс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости п -связи, а следовательно, и свойствами.

Алкены изомерны циклоалканам (межклассовая изомерия), например:

сн2=сн-сн2-сн2-сн2-сн3
гексен-1 циклогексан

Номенклатура алкенов , разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи

Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения

сн3-сн-сн2-сн=сн-сн3 сн3

5-метилгексен-2, а не 2-метилгексен-4, как можно было бы предположить.

Если по расположению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

CH3- CH2-CH=CH-СН-СН3
l
СН3
2-метилгексен-З

3. Формирование названия

Названия алкенов формируются так же, как и названия ал-канов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс , обозначающий принадлежность соединения к классу алкенов, -ен.

Получение

1. Крекинг нефтепродуктов. В процессе термического крекинга предельных углеводородов наряду с образованием алка-нов происходит образование алкенов.

2. Дегидрирование предельных углеводородов. При пропускании алканов над катализатором при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

3. Дегидратация спиртов (отщепление воды). Воздействие водоотнимающих средств (Н2804, Аl203) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:

Эту реакцию называют внутримолекулярной дегидратацией (в отличие от межмолекулярной дегидратации, которая приводит к образованию простых эфиров и будет изучена в § 16 «Спирты»).

4. Дегидрогалогенирование (отщепление галогеноводорода).

При взаимодействии галогеналкана со щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода.

Обратите внимание, что в результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева:

При отщеплении галогеноводорода от вторичных и третичных галогеналканов атом водорода отщепляется от наименее гидрированного атома углерода.

5. Дегалогенирование. При действии цинка на дибромпроиз-водное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:

Физические свойства

Первые три представителя гомологического ряда алкенов - газы, вещества состава С5Н10-С16Н32 - жидкости, высшие алкены - твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства

Реакции присоединения

Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования - металлов - платины, палладия, никеля:

CH3-СН2-СН=СН2 + Н2 -> CH3-CH2-СН2-СН3

Эта реакция протекает и при атмосферном и при повышенном давлении и не требует высокой температуры, так как является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.

Марковников Владимир Васильевич

(1837-1904)

Русский химик-органик. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения. Исследовал (с 1880 г.) состав нефти, заложил основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ - цикло-парафины (нафтены).

3. Гидрогалогенирование (присоединение галогеноводорода).

Реакция присоединения галогеноводорода более подробно будет рассмотрена ниже. Эта реакция подчиняется правилу Марковникова:

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.

4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

CH2=CH2 + H2O -> СН3-СН2ОН
этен этанол

Обратите внимание на то, что первичный спирт (с гидроксигруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция также протекает в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксигруппа - к менее гидрированному.

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободноради-кальному механизму.

Реакции окисления

Как и любые органические соединения, алкены горят в кислороде с образованием С02 и Н20.

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь.

Как вы уже знаете, непредельные углеводороды - алкены способны вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Электрофильное присоединение

Электрофильные реакции - это реакции, протекающие под действием электрофилов - частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь. Простейшей электрофильной частицей является катион водорода. Известно, что атом водорода имеет один электрон на З-в-орбитали. Катион водорода образуется, когда атом теряет этот электрон, таким образом, у катиона водорода вообще отсутствуют электроны:

Н· - 1е - -> Н +

При этом катион имеет достаточно высокое сродство к электрону. Сочетание этих факторов делает катион водорода достаточно сильной электрофильной частицей.

Образование катиона водорода возможно при электролитической диссоциации кислот:

НВr -> Н + + Вr -

Именно по этой причине многие электрофильные реакции идут в присутствии и с участием кислот.

Электрофильные частицы, как уже говорилось раньше, действуют на системы, содержащие области повышенной электронной плотности. Примером такой системы может являться кратная (двойная или тройная) углерод-углеродная связь.

Вы уже знаете, что атомы углерода, между которыми образована двойная связь, находятся в состоянии sр 2 -гибридизации. Негибри-дизованные р-орбитали соседних атомов углерода, находящиеся в одной плоскости, перекрываются, образуя п -связь, которая менее прочна, чем Þ-связь, и, что наиболее существенно, легко поляризуется под действием внешнего электрического поля. Это означает, что при приближении положительно заряженной частицы электроны тс-связи смещаются в ее сторону и образуется так называемый п- комплекс.

Получается п -комплекс и при присоединении катиона водорода к п -связи. Катион водорода как бы натыкается на выступающую из плоскости молекулы электронную плотность п -связи и присоединяется к ней.

На следующей стадии происходит полное смещение электронной пары п -связи к одному из атомов углерода, что приводит к появлению на нем неподеленной пары электронов. Орбиталь атома углерода, на которой находится эта пара, и незаполненная орбиталь катиона водорода перекрываются, что приводит к образованию ковалентной связи по донорно-акцепторному механизму. У второго атома углерода при этом остается незаполненная орбиталь, т. е. положительный заряд.

Образовавшаяся частица называется карбокатионом, так как она содержит положительный заряд на атоме углерода. Эта частица может соединиться с каким-либо анионом, частицей, имеющей неподеленную электронную пару, т. е. нуклеофилом.

Рассмотрим механизм реакции электрофильного присоединения на примере гидробромирования (присоединения бромоводорода) этена:

СН2= СН2 + НВг --> СНВr-СН3

Реакция начинается с образования электрофильной частицы - катиона водорода, которое происходит в результате диссоциации молекулы бромоводорода.

Катион водорода атакует п -связь, образуя п -комплекс, который быстро преобразуется в карбокатион:

Теперь рассмотрим более сложный случай.

Реакция присоединения бромоводорода к этену протекает однозначно, а взаимодействие бромоводорода с пропеном теоретически может дать два продукта: 1-бромпропан и 2-бромпропан. Данные эксперимента показывают, что в основном получается 2-бромпропан.

Для того чтобы объяснить это, нам придется рассмотреть промежуточную частицу - карбокатион.

Присоединение катиона водорода к пропену может привести к образованию двух карбокатионов: если катион водорода присоединится к первому атому углерода, к атому, который находится на конце цепи, то положительный заряд окажется у второго, т. е. в центре молекулы (1); если присоединится ко второму, то положительный заряд окажется у первого атома (2).

Преимущественное направление реакции будет зависеть от того, какого карбокатиона окажется больше в реакционной среде, что, в свою очередь, определяется устойчивостью карбокатиона. Эксперимент показывает преимущественное образование 2-бромпропа-на. Это означает, что в большей степени происходит образование карбокатиона (1) с положительным зарядом на центральном атоме.

Большая устойчивость этого карбокатиона объясняется тем, что положительный заряд на центральном атоме углерода компенсируется положительным индуктивным эффектом двух метильных групп, суммарный эффект которых выше, чем +/-эффект одной этильной группы:

Закономерности реакций гидрогалогенирования алкенов были изучены известным русским химиком В. В. Марковниковым, учеником А. М. Бутлерова , который, как это уже было сказано выше, сформулировал правило, носящее его имя.

Это правило было установлено эмпирически, т. е. опытным путем. В настоящее время мы можем привести вполне убедительное его объяснение.

Интересно, что правилу Марковникова подчиняются и другие реакции электрофильного присоединения, поэтому будет правильно сформулировать его в более общем виде.

В реакциях электрофильного присоединения электрофил (частица с незаполненной орбиталью) присоединяется к более гидрированному атому углерода, а нуклеофил (частица с неподеленной парой электронов) - к менее гидрированному.

Полимеризация

Особым случаем реакции присоединения является реакция полимеризации алкенов и их производных. Эта реакция протекает по механизму свободнорадикального присоединения:

Полимеризацию проводят в присутствии инициаторов - пере-кисных соединений, которые являются источником свободных радикалов. Перекисными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является перекись водорода НООН.

При температуре 100 °С и давлении 100 МПа происходит гомо-лиз неустойчивой кислород-кислородной связи и образование радикалов - инициаторов полимеризации. Под действием радикалов КО- происходит инициирование полимеризации, которая развивается как реакция свободнорадикального присоединения. Рост цепи прекращается, когда в реакционной смеси происходит рекомбинация радикалов - полимерной цепи и радикалов или КОСН2СН2-.

При помощи реакции свободнорадикальной полимеризации веществ, содержащих двойную связь, получают большое количество высокомолекулярных соединений:

Применение алкенов с различными заместителями дает возможность синтезировать богатый ассортимент полимерных материалов с широким набором свойств.

Все эти полимерные соединения находят широкое применение в самых разных областях человеческой деятельности - промышленности, медицине, используются для изготовления оборудования биохимических лабораторий, некоторые являются полупродуктами для синтеза других высокомолекулярных соединений.

Окисление

Вы уже знаете, что в нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов). В кислой среде (подкисленный серной кислотой раствор) происходит полное разрушение двойной связи и превращение атомов углерода, между которыми существовала двойная связь, в атомы углерода карбоксильной группы:

Деструктивное окисление алкенов можно применять для определения их структуры. Так, например, если при окислении некоторого алкена получены уксусная и пропионовая кислоты, это означает, что окислению подвергся пентен-2, а если получены масляная (бутановая) кислота и углекислый газ, то исходный углеводород - пентен-1.

Применение

Алкены широко используются в химической промышленности как сырье для получения разнообразных органических веществ и материалов.

Так, например, этен является исходным веществом для производства этанола, этиленгликоля, эпоксидов, дихлорэтана.

Большое количество этена перерабатывается в полиэтилен, который используется для изготовления упаковочной пленки, посуды, труб, электроизоляционных материалов.

Из пропена получают глицерин, ацетон, изопропанол, растворители. Полимеризацией пропена получают полипропилен, который по многим показателям превосходит полиэтилен: имеет более высокую температуру плавления, химическую устойчивость.

В настоящее время из полимеров - аналогов полиэтилена производят волокна, обладающие уникальными свойствами. Так, например, волокно из полипропилена прочнее всех известных синтетических волокон.

Материалы, изготовленные из этих волокон, являются перспективными и находят все большее применение в разных областях человеческой деятельности.

1. Какие виды изомерии характерны для алкенов? Напишите формулы возможных изомеров пентена-1.
2. Из каких соединений может быть получен: а) изобутен (2-метилпропен); б) бутен-2; в) бутен-1? Напишите уравнения соответствующих реакций.
3. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В. 4. Предложите способ получения 2-хлорпропана из 1-хлор-пропана. Напишите уравнения соответствующих реакций.
5. Предложите способ очистки этана от примесей этилена. Напишите уравнения соответствующих реакций.
6. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.
7. На полное гидрирование 2,8 г алкена израсходовано 0,896 л водорода (н. у.). Какова молекулярная масса и структурная формула этого соединения, имеющего нормальную цепь углеродных атомов?
8. Какой газ находится в цилиндре (этен или пропен), если известно, что на полное сгорание 20 см3 этого газа потребовалось 90 см3 (н. у.) кислорода?
9*. При реакции алкена с хлором в темноте образуется 25,4 г дихлорида, а при реакции этого алкена той же массы с бромом в тетрахлорметане - 43,2 г дибромида. Установите все возможные структурные формулы исходного алкена.

История открытия

Из вышеизложенного материала мы с вами уже поняли, что этилен является родоначальником гомологического ряда непредельных углеводородов, имеющий одну двойную связь. Их формула C n H 2n и носят они название алкенов.

Немецкому врачу и химику Бехеру в 1669 году впервые удалось получить этилен путем воздействия серной кислоты на этиловый спирт. Бехер установил, что этилен является, более химически активным, чем метан. Но, на жаль, в то время, полученный газ ученый идентифицировать не смог, поэтому и названия ему никакого не присвоил.

Немного позже таким же способом получения этилена воспользовался и голландские химики. А так как при взаимодействии с хлором он имел свойство образовывать маслянистуюю жидкость, то соответственно и получил название «маслородного газа». Позднее стало известно, что эта жидкость является дихлорэтаном.

Во французском языке термин «маслородный» звучит, как oléfiant. А после того, как были обнаружены и другие углеводороды подобного типа, то Антуан Фуркруа,французский химик и ученый, ввел новый термин, который стал общим для всего класса олефинов или алкенов.

Но уже в начале девятнадцатого века французским химиком Ж. Гей-Люссаком было доведено, что этанол состоит не только из «маслородного» газа, но и воды. Кроме того, такой же газ был обнаружен и в хлористом этиле.

И хотя химики и определили, что этилен состоит из водорода и углерода, и уже знали состав веществ, но найти его настоящую формулу еще долго не могли. И лишь в 1862 году Э.Эрленмейеру удалось доказать наличие в молекуле этилена двойной связи. Это признал и российский ученый А. М. Бутлеров и подтвердил правильность такой точки зрения экспериментально.

Нахождение в природе и физиологическая роль алкенов

Многих интересует вопрос, где в природе можно встретить алкены. Так вот, оказывается, что в природе они практически не встречаются, так как простейший его представитель этилен является гормоном для растений и лишь в незначительном количестве в них синтезируется.

Правда в природе существует такой алкен, как мускалур. Этот один из природных алкенов является половым аттрактантом самки домашней мухи.

Стоит обратить внимание на то, что, имея, высокую концентрацию низшие алкены обладают наркотическим эффектом, которые способны вызывать судороги и раздражение слизистых.

Применение алкенов

Жизнь современного общества на сегодняшний день трудно представить без применения полимерных материалов. Так как в отличие от природных материалов, полимеры обладают различными свойствами, они легкие в обработке, да и если смотреть по цене, то они сравнительно дешевы. Еще важным аспектом в пользу полимеров, является то, что многие из них можно вторично перерабатывать.

Алкены свое применение нашли при производстве пластмасс, каучуков, пленок, тефлона, этилового спирта, уксусного альдегида и других органических соединений.



В сельском хозяйстве его применяют, как средство, которое ускоряет процесс созревания фруктов. Для получения различных полимеров и спиртов используют пропилен и бутилены. А вот в производстве синтетического каучука используют изобутилен. Поэтому можно сделать вывод, что без алкенов не обойтись, так как они являются важнейшим химическим сырьем.

Промышленное использование этилена

В промышленных масштабах пропилен, как правило, используют для синтеза полипропилена и для получения изопропанола, глицерина, масляных альдегидов и т.д. С каждым годом потребность в пропилене возрастает.



Алкены - более активный класс веществ, чем алканы. Химические свойства алкенов обусловлены строением их молекул.

Строение

Непредельные углеводороды - алкены или олефины - отличаются от других классов органических веществ наличием двойной или π-связи между атомами углерода. Двойная связь может находиться в любом месте молекулы.

Пи-связь образуется перекрыванием р-орбиталей. За счёт того, что р-орбиталь имеет расширения в обе стороны от оси и напоминает гантель, пи-связь возникает в двух местах. В отличие от σ-связи, возникающей при перекрывании s-орбиталей в виде сферы, π-связь менее прочная и легко разрушается под действием других соединений. Это обуславливает активность алкенов.

Рис. 1. π-связь и σ-связь.

Двойная связь в реакциях присоединения выступает в роли донора электронов. Поэтому алкенам свойственны реакции электрофильного присоединения.

Физические свойства

Общие физические свойства алкенов:

  • температура плавления и кипения повышается с увеличением молекулярной массы в гомологическом ряду;
  • не растворяются в воде;
  • держатся на водной поверхности, так как имеют плотность во много раз меньше плотности воды;
  • растворяются в органических растворителях - спиртах, эфирах.

Агрегатное состояние веществ меняется от количества атомов углерода в гомологическом ряду. Алкены с 2-4 атомами углерода - газы. От пептена (C 5 H 10) до гептадецена (C 17 H3 4) вещества находятся в жидком состоянии. Алкены, содержащие более 17 атомов углерода, являются твёрдыми телами.

Рис. 2. Гомологический ряд алкенов.

Химические свойства

Особенности и примеры химических свойств алкенов приведены в таблице.

Реакция

Описание

Уравнения реакций

Гидрирование - присоединение водорода

Протекает при высоком давлении в присутствии катализатора - никеля, палладия или платины. Образуются алканы - предельные углеводороды

CH 2 =CH-CH 3 + H 2 → CH 3 -CH 2 -CH 3

Галогенирование - присоединение галогенов

Протекает при обычных условиях. Галогены присоединяются по двойной связи. Образуются дигалогеналканы

CH 2 =CH 2 + Cl 2 → Cl-CH 2 -CH 2 -Cl (1,2-дихлорэтан);

CH 3 -CH=CH-CH 3 + Br 2 → CH 3 -CH-Br-CH-Br-CH 3 (2,3-дибромбутан)

Гидрогалогенирование - присоединение галогеноводородов

Реакция электрофильного присоединения. Электрофилом является протон водорода в составе галогена. Образуются галогеналканы

CH 2 =CH 2 + HCl → CH 3 -CH 2 -Cl (хлорэтан)

Гидратация - присоединение воды

Реакция протекает в присутствии неорганических кислот - серной, фосфорной. Выполняют функцию катализатора и являются источниками водорода. Образуются одноатомные спирты

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 OH

Полимеризация - увеличение числа атомов

Протекает в присутствии катализатора, при повышенных давлении и температуре. Таким способом получают полиэтилен, поливинилхлорид, полипропилен

nCH 2 =CH 2 → (-CH 2 -CH 2 -)n

Протекает при избытке кислорода

CH 2 =CH 2 + 3O 2 → 2CO 2 + H 2 O

Неполное окисление

Протекает в присутствии катализатора. Алкен, смешанный с кислородом, пропускают над нагретым серебром. Образуется эпоксид - оксид алкена

2CH 2 =CH 2 + O 2 → 2CH 2 -O-CH 2

Реакция Вагнера

Окисление перманганатом калия в щелочной или нейтральной среде. Образуются спирты

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3CH 2 OH-CH 2 OH + 2KOH + 2MnO 2

Окисление кипящим перманганатом калия в кислой среде

Образуются карбоновые кислоты

CH 3 -CH=CH-CH 3 + 4[O] → 2CH 3 COOH

При нагревании в присутствии катализатора алкены вступают в реакцию изомеризации. Меняется положение двойной связи или структура углеродного скелета. Например, бутен-1 (положение двойной связи между первым и вторым атомами) превращается в бутен-2 (двойная связь «сдвигается» на второй атом).

Рис. 3. Изомеризация алкенов.

Что мы узнали?

Из урока химии 10 класса узнали о химических свойствах алкенов. Двойная связь делает эти вещества более активными, чем алканы. Алкены взаимодействуют с галогенами, кислородом, водой, водородом, галогеноводородами. Большинство реакций протекает в присутствии катализатора при высокой температуре или при повышенном давлении. Из алкенов получаются полимеры. Также под действием катализаторов образуются изомеры.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 151.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то