Относительная система координат. Второй семинар – вспомогательные элементы. Применение систем координат в геодезии

Выполнение полета по заданной воздушной трассе или маршруту с целью вывода самолета на заданный пункт или аэродром посадки требует от экипажа точного знания текущего местоположения относительно земной поверхности. Это требование вытекает из того, что поворотные пункты маршрута полета и аэродром по­садки задаются обычно географическими точками, например наз­ваниями населенных пунктов или их географическими координатами, которые позволяют проложить заданную линию пути на полетной карте или ввести их в программирующее устройство навигационного комплекса.

Зная текущее, соответствующее данному моменту времени место самолета, экипаж может определять правильность выполнения полета: совпадает ли фактическая линия пути с заданной. Исправление возможных уклонений достигается вводом поправок в пилотажный режим, т. е. корректировкой курса и воздушной скорости полета.

Место самолета может быть получено непосредственно и косвенно. Непосредственное определение МС производится по фиксации момента пролета ВС над опознанным ориентиром и с помощью технических средств самолетовождения. В первом случае, как правило, визуально отмечается момент, когда самолет находится строго над каким-либо ориентиром (объектом). Это наиболее надежный способ определения МС. Однако здесь чрезвычайно важно достоверно опознать ориентир, так как ошибка может привести к потере ориентировки.

Непосредственное определение МС с помощью технических средств самолетовождения достигается фиксацией момента пролета над радиолокационным ориентиром или радиомаяком. Косвенное определение МС осуществляется измерением некоторых параметров, например азимута, дальности, высоты небесного светила и т. п., находящихся в функциональной зависимости от взаимного положения ВС и внешнего "источника навигационной информации. В результате измерения получают координаты МС, соответствующие моменту определения, но чаще всего в системе координат, отличной от той, в которой ведется контроль пути (счисление). Они требуют дальнейшего преобразования. В качестве источников позиционной информации используются наземные радиомаяки, визуальные и радиолокационные ориентиры, небесные тела естественного и искусственного происхождения.

Координаты МС, полученные на основании внешней информа­ции, называют абсолютными, так как не зависят от навигационного и пилотажного режимов полета, дальности и продолжительности полета до момента определения МС. Точность абсолютных координат определяется только средствами и условиями измерения, а также взаимным расположением самолета и источника позиционной информации.

В настоящее время находят применение следующие способы определения абсолютных координат: по моменту пролета опорного ориентира; обзорно-сравнительный; координатных преобразований. Каждый из них имеет свои достоинства и недостатки, определяемые особенностями самого способа и технической реализации его.

Непрерывный контроль пути в процессе самолетовождения возможен двумя методами: определением абсолютных координат или счислением пройденного пути.

Первый метод может быть реализован при возможности непрерывного получения позиционной информации от внешнего источника. Этого можно достичь примене­нием радионавигационных систем дальнего действия и спутниковых навигационных систем, перекрывающих своими рабочими областя­ми весь предполагаемый район полетов.

Однако в большинстве случаев измеренные абсолютные координаты используют дискретно, т. е. через определенные промежутки времени. Поэтому для непрерывного самолетовождения реализуется второй метод, при котором используются относительные координаты, отсчитываемые от последнего МС, полученного в результате обработки внешней информации. Относительные координаты определяются счислением пути, основанном на интегрировании вектора путевой скорости или ускорений самолета по времени. Следовательно, это дает возможность получать не сами координаты МС, а только лишь приращение их во времени.

Счисление пути позволяет определять координаты МС относительно ранее определенных-абсолютных. Таким образом, в результате счисления пути координаты текущего МС как бы «сохраняются» во времени и пространстве между моментами определения абсолютных координат.

Основной недостаток счисления пути заключается, в том, что только стоит нарушиться системе счисления, например при отказе электропитания навигационного комплекса, как восстановить текущие координаты МС уже невозможно. Для этого необходимо определять абсолютные координаты.

Для счисления пути используется дополнительная информация о курсе, скорости ВС и ветре. Процесс интегрирования (суммиро­вания) вектора путевой скорости приводит к появлению возрастающей ошибки счисления. Поэтому точность самолетовождения в большой степени зависит от продолжительности полета в автономном режиме, в процессе которого МС не уточнялось и абсолютные координаты его не определялись. В этом проявляются связь и раз­личие между относительными и абсолютными координатами. В принципе для надежного самолетовождения абсолютные координаты содержат достаточно навигационной информации, в то время как и информация, содержащаяся в относительных координатах, быстро утрачивается вследствие возрастающих ошибок счисления.

Компьютерная графика

Учебное пособие

Санкт-Петербург


1.1. Основы работы в среде AutoCAD.. 4

1.2. Построение чертежа по 3D-технологии. 10

1.3. Лабораторная работа №1. 15

1.4. Типовые соединения деталей. 19

1.5. Виды изделий и конструкторских документов. 27

1.6. Лабораторная работа №2. 32

2.1. Объекты в 3ds Max. 39

2.2. Методы преобразования геометрических объектов. 45

2.3. Лабораторная работа №3. 48

2.4. Лофтинговое моделирование. 50

2.5. Деформация моделей, построенных методом лофтинга. 53

2.6. Лабораторная работа №4. 56

2.7. Сетчатые оболочки. 58

2.8. Редактирование сетчатых оболочек. 61

2.9. Лабораторная работа №5. 66

2.10. Источники света. 67

2.11. Съемочные Камеры.. 70

2.12. Материалы.. 75

2.13. Лабораторная работа №6. 80

2.14. Анимация. 82

2.15. Движение объектов по заданному пути. 86

2.16. Лабораторная работа №7. 88

3. Графическое программирование. 90

3.1. Описание набора драйверов DirectX.. 90

3.2. Описание графической системы OpenGL. 93

3.3. Основы OpenGL. 96

3.4. Рисование геометрических объектов. 102

3.5. Лабораторная работа №8. 107

Список литературы.. 110


AutoCAD - наиболее распространенная в мире система автоматизированного проектирования и выпуска рабочей конструкторской и проектной документации. С его помощью создаются двумерные и трехмерные проекты различной степени сложности в области архитектуры и строительства, машиностроения, геодезии и т.д. Формат хранения данных AutoCAD де-факто признан международным стандартом хранения и передачи проектной документации.

Основным достоинством AutoCAD является доступность для создания на его базе мощных специализированных расчетно-графических пакетов. Autodesk выпускает две основных линейки продуктов, предназначенных для архитекторов (Autodesk Architectural Desktop) и машиностроителей (Autodesk Mechanical Desktop). Все эти продукты используют AutoCAD как основу.

Первая версия MicroCAD (прототипа AutoCAD) была выпущена 25 августа 1982 года. Этот день считается датой выхода первого продукта компании Autodesk.


Основы работы в среде AutoCAD

Строка состояния



Строка состояния (рис. 1.1) отображает теку­щие координаты курсора и содержит кнопки включения/выключения режимов черчения:

· SNAP - Snap Mode (Шаговая привязка) - включение и выключение шаговой привязки курсора;

· GRID - Grid Display (Отображение сетки) - включение и выклю­чение сетки;

· ORTHO - Ortho Mode (Режим «Орто») - включение и выключе­ние ортогонального режима;

· POLAR - Polar Tracking (Полярное отслеживание) - вклю­чение и выключение режима полярного отслеживания;

· OSNAP - Object Snap (Объектная привязка) - включение и выключение режимов объектной привязки;

· OTRACK - Object Snap Tracking (Отслеживание при объект­ной привязке) - включение и выключение режима отслеживания при объектной привязке;

· MODEL/PAPER - Model or Paper space (Пространство модели или листа) - переключение из пространства модели в пространство листа;

· LWT - Show/Hide Lineweight (Отображение линий в соответствии с весами) - включение и выключение режима отображения линий в соответствии с весами (толщинами).

Рис. 1.1. Строка состояния

Использование объектной привязки позволяет сократить время работы над чертежом, так как в ряде случаев отпадает необходимости ручного ввода координат, необходимо лишь указать курсором на уже существующую точку, принадлежащую какому-либо объекту.


Окно командных строк

Окно «Command Line» (Командная строка, рис. 1.2) обычно расположено над строкой состояния и служит для ввода команд и вывода подсказок и сообщений AutoCAD. На рис. 1.2 приведен пример создания клина (инструмент «Wedge» панели инструментов «Solids») с помощью командной строки. Его можно задать путем указания двух противоположных вершин основания и высоты, либо одной вершины, длины, высоты и ширины (для клина, вписанного в куб, – вершины и значения стороны). При перечислении параметры задаются через запятую. Разделитель целой и дробной части – точка.

Рис. 1.2. Окно командных строк

Системы координат

В AutoCAD существуют две системы координат: мировая система координат World Coordinate System (WCS) и пользовательская система координат User Coordinate System (UCS). Активна только одна система координат, которую принято называть теку­щей. В ней координаты определяются любым доступным способом.

Основное отличие мировой системы координат от пользователь­ской заключается в том, что мировая система координат может быть только одна (для каждого пространства модели и листа), и она неподвижна. Применение пользовательской системы координат не имеет практически никаких ограничений. Она может быть расположена в любой точке пространства под любым углом к мировой системе координат. Это обусловлено тем, что проще выровнять си­стему координат с существующим геометрическим объектом, чем определять точное размещение точки в трехмерном пространстве.

Для работы с системами координат служит панель «UCS» (рис. 1.3). С ее помощью можно, к примеру, перейти от пользовательской системы координат к мировой (кнопка «World UCS») или выровнять систему координат по произвольному объекту (кнопка «Object UCS»).

Рис. 1.3. Панель инструментов «UCS»

Абсолютные и относительные координаты

В трехмерном и двумерном пространстве широко используются как абсолютные координаты (отсчитываемые от начала координат), так и относитель­ные (отсчитываемые от последней указанной точки). Признаком относительных координат является символ @ перед координатами задаваемой точки: «@<число 1>,<число 2>,<число 3>».

Типовые виды на объекты

Для представления модели в различных видах служит панель инструментов «View» (Вид, рис. 1.4). Она позволяет представить модель как в шести стандартных видах, так и в четырех изометрических.

Рис. 1.4. Панель инструментов «View»

Координаты, которые указывают местоположение точки, учитывая систему координат экрана, называются абсолютными координатами . Например, PSET(100,120) - означает, что на экране появится точка на 100 пикселей правее и 120 пикселей ниже левого верхнего угла, т.е. начала координат экрана.

Координаты точки, которая была нарисована последней, хранятся в памяти компьютера, Эта точка называется точкой последней ссылки (ТПС). Например, если при рисовании линии указать только координаты одной точки, то на экране будет проведен отрезок от ТПС до указанной точки, которая после этого сама станет ТПС. Сразу после включения графического режима точкой последней ссылки является точка в центре экрана.

Кроме абсолютных в QBASIC’е используются еще и относительные координаты. Эти координаты показывают величину перемещения ТПС. Чтобы нарисовать новую точку, используя относительные координаты, нужно использовать ключевое слово STEP(X,Y), где Х и У - смещение координат относительно ТПС.

Например, PSET STEP(-5,10) - при этом появится точка, положение которой будет левее на 5 и ниже на 10 точек относительно точки последней ссылки. То есть, если точка последней ссылки имела координаты, например, (100,100), то получится точка с координатами (95,110).

Рисование линий и прямоугольников.

LINE(X1,Y1)-(X2,Y2),C - рисует отрезок, соединяющий точки (Х1,У1) и (Х2,У2), цветом С.

Например, LINE(5,5)-(10,20),4

Результат: 5 10

Если не указывать первую координату, то будет проведен отрезок из ТПС в точку с координатами (Х2, У2).

LINE(X1,Y1)-(X2,Y2), C, В - рисует контур прямоугольника с концами диагонали в точках (Х1,У1) и (Х2,У2), С - цвет, В - маркер прямоугольника.

Например, LINE(5,5)-(20,20), 5, В

Результат: 5 20


Если вместо маркера В указать ВF, то будет нарисован закрашенный прямоугольник (блок):

LINE(X1,Y1)-(X2,Y2),C, BF

Например, LINE(5,5)-(20,20),5, BF

Результат: 5 20

Рисование окружностей, элипсов и дуг.

CIRCLE(X,Y), R, C - рисует окружность с центром в точке (Х,У), радиусом R, цветом С.

Например, CIRCLE(50,50), 10, 7

Результат:

50

CIRCLE(X,Y), R, C, f1, f2 - дуга окружности, f1 и f2 значения углов дуги в радианах от 0 до 6.2831, определяющие начало и конец дуги.


CIRCLE(X,Y), R, C, е - элипс, с центром в точке(Х,У), радиусом R, е -- отношение вертикальной оси к горизонтальной.

Например, CIRCLE(50,50), 20, 15, 7, 1/2

Результат: 30 50 70


В случае необходимости, после параметра С можно указать значения углов дуги элипса f1 и f2.

PAINT(X,Y), C, K - закрасить цветом С фигуру, нарисованную цветом К, (Х,У) - точка, лежащая внутри фигуры. Если цвет контура совпадает с цветом закраски, то указывают только один цвет: PAINT(X,Y), C

Например, надо закрасить окружность CIRCLE(150,50), 40, 5 цветом 4. Для этого надо выполнить оператор PAINT(150,50), 4, 5 , т.к. центр окружности точно лежит внутри закрашиваемой фигуры, мы использовали его как внутреннюю точку.

Решение задач.

Задача 1.

Нарисовать четыре точки, которые лежат на одной горизонтальной прямой на расстоянии 20 пикселей друг от друга. Точка последней ссылки имеет координату (15, 20).

Решение:ПРИМЕЧАНИЯ .

SCREEN 9: COLOR 5,15:REM графич. режим, фон 5, цвет 15

CLS:REM очистка экрана

PSET(15,20) :REM рисует точку с координатами (15,20)

PSET STEP(20,0) :REM рисует точку со смещением
PSET STEP(20,0) :REM относительно последней на 20

PSET STEP(20,0) :REM пикселей по оси ОХ.

Результат: 15 35 55 75


20. . . .

Задача 2.

Нарисовать три окружности, центры которых лежат на одной горизонтальной прямой на расстоянии 30 пикселей друг от друга. Радиусы окружностей равны 20, центр первой окружности совпадает с центром экрана.

Решение.

SCREEN 9 120 150 180

CIRCLE STEP(0, 0), 20, 15 100

CIRCLE STEP(30, 0), 20, 15

CIRCLE STEP(30, 0), 20, 15

Задача 2.

Построить четырехугольник с вершинами (10,15), (30,25), (30,5) и (20,0).

LINE (10,15)-(30,25), 5

LINE - (30, 5),5

LINE - (25,0), 5

LINE - (10,15), 5

РЕЗУЛЬТАТ: 5 10 20 25 30

15

Напишите программу рисования произвольной картинки.

Полезный совет : Прежде, чем начать писать программу, нарисуйте картинку на листке в клетку и расставьте нужные координаты. Вы сразу увидите, какие числа будут в качестве операндов в Вашей программе.

ОТНОСИТЕЛЬНАЯ СИСТЕМА КООРДИНАТ

При использовании плоской обработки технолог-программист имеет возможность задавать относительную систему координат. Потребность в этом очень часто возникает, например, в случае рассогласования конструкторских и технологических баз. Для создания относительной системы координат пользователь должен воспользоваться командой:

После вызова команды в автоменю будут доступны следующие опции:

Параметры системы координат

Центр системы координат

Ось X системы координат

Ось Y системы координат

Выйти из команды

Опции, на пиктограммах которых изображены оси координат (, и ), позволяют задать центр и соответствующие оси системы координат. Как правило, для задания каждого из этих элементов указывается узел на чертеже детали.

Опция ввода параметров по умолчанию позволяет пользователю все перечисленные параметры задавать определёнными цифровыми значениями в окне диалога “Параметры системы координат”.

Для задания относительной системы координат достаточно задать центр и одну из осей создаваемой системы координат. После этого достаточно воспользоваться кнопкой

ЧПУ самостоятельно рассчитает недостающую ось создаваемой системы координат.

Для того, чтобы траектория обработки рассчитывались в соответствии с созданной относительной системой координат, эту систему координат в списке траекторий необходимо поставить перед траекторией обработки.

НАСТРОЙКА ПРОЕКТА

При эксплуатации версии T-FLEX ЧПУ 2D пользователь может создавать траектории обработки и по ним управляющие программы для разных видов обработки (от электроэрозионной до фрезерной) на одном чертеже обрабатываемой детали. Например, сначала технолог-программист делает всю механообработку, а затем электроэрозионную. Все необходимые настройки технолог-программист производит в рабочем окне настройки проекта, появляющемся при вызове команды:

В примере на рисунке в списке составных траекторий присутствует две позиции. «Обработка 1» включает в себя всё сверление и фрезерование обрабатываемой детали. «Обработка 2» пустая, но может включать в себя, например, обработку детали с другой стороны (за другой установ) или обработку с этой же стороны, но другого вида (электроэрозионную или лазерную), или какой-либо другой вариант.

Клавиши [Добавить] и [Удалить]

служат соответственно для ввода новой позиции в список составных траекторий или удаления старой позиции.

Необходимо отметить, что для каждой позиции в списке составных траекторий создаётся собственная управляющая программа в соответствии с выбранным пользователем постпроцессором.

Кроме того, составляющие части активной составной траектории отображаются одним цветом, а существующие траектории - другим цветом.

Создание управляющей программы

СОЗДАНИЕ УПРАВЛЯЮЩЕЙ ПРОГРАММЫ

После того как технолог-программист подготовит в системе траекторию обработки, ему необходимо также сгенерировать управляющую программу для используемого станка, с тем постпроцессором, с которым работает данный станок. Для этого в случае 2D, 2.5D и 4D обработки используется команда:

«ЧПУ|Сохранение G- программы»

Для траекторий 3D и 5D обработки:

При вызове любой из этих команд на экране появляется диалоговое окно “Сохранение G-программы”.

В появившемся на экране окне необходимо

нажать , после чего на экране появится окно диалога “Параметры сохранения составной траектории”.

В данном окне последовательно задаются имена необходимых для выбранного типа обработки постпроцессоров, имя управляющей программы и место её сохранения.

Необходимо отметить, что пользователь может выбирать постпроцессоры поставляемые с системой или те, которые были им разработаны в системе с использованием генератора постпроцессоров. Управляющая программа для одной и той же детали и для одного и того же вида обработки может быть сохранена в разных файлах с разными постпроцессорами. Тем самым можно оптимально использовать оборудование одного типа, но с различными стойками ЧПУ.

Если все действия, перечисленные выше, были проведены правильно, то пользователь увидит на экране окно, которое должно содержать все внесённые данные.

Необходимо особенно отметить, что имеется возможность удаления из списка конкретной выбранной управляющей программы. Для этого необходимо указать её в списке, используя или клавиши < > и < ↓ > , а затем нажать кнопку [Удалить] . Также возможно сохранить все присутствующие в списке управляющие программы в отдельные файлы, для чего нужно использовать кнопку [Сохранить] .

В зависимости от простановки размеров на чертеже детали, а также исходя из удобства программирования и возможностей станка с ЧПУ, положение какого-либо элемента геометрии детали можно задать в абсолютной или относительной системе координат.

В абсолютной системе координат отсчет производится от начальной нулевой точки. Задается функцией G 90 (absolute ) . Если рассматривать абсолютную систему координат на примере обработки двух отверстий 1 и 2 (рис. 3.22, а), то можно отметить, что положение середины первого отверстия (точка 1) будет определяться размерами X 1 и Y 1 от нуля
(от начала системы координат), и положение второго отверстия (точка 2) также будет задаваться от нуля размерами X 2 и Y 2.

а) б)

Рис. 3.22. Системы координат: а – абсолютные (absolute); б – относительные (incremental)

В относительной системе координат отсчет производится от последней точки траектории перемещения. Задается функцией G 91 (incremental ) . Если анализировать принцип задания координат точек в относительной системе отсчета (рис. 3.22, б), то можно отметить, что положение первого отверстия аналогично предыдущему будет определяться размерами X 1 и Y 1 от нуля (от начала системы координат), в то время как положение второго отверстия будет задаваться от точки 1 размерами X 2 и Y 2. Другими словами, в относительной системе отсчета координаты следующей точки задаются в приращениях от последней заданной точки.

Вопросы и задания для самоконтроля

1. Что такое кадр управляющей программы?

2. Из чего состоит кадр управляющей программы?

3. Дайте определение системы координат.

4. Что такое декартова система координат?

5. Дайте определение полярной системы координат.

6. Что называют сферической системой координат?

7. В чем различие между абсолютной и относительной системами отсчета?

8. Дайте определение линейной, круговой и винтовой интерполяций.

9. Назовите виды и назначение информации, содержащейся в управляющей программе.

10. Опишите состав кадра управляющей программы N 001 G 01 X -004000 T 02 L 02 F6 25 S 24 M 03 М 08 LF .

Тесты к разделу

1. Часть управляющей программы, состоящей из информации для выполнения одного перехода при обработке детали или же для перемещения суппорта из одной точки в другую при позиционировании (отвод, подвод), а также для выполнения технологических команд, называется:

а) кадром;

б) словом;

в) адресом;

г) системой координат;

д) содержимым адреса.

2. Часть кадра, содержащая информацию об одной из программируемых функций (команд), называется:

а) словом;

б) адресом;

в) системой координат;

г) содержимым адреса.

3. Условное именование языка программирования устройств с числовым программным управлением – это:

а) G -код;

б) М -код;

в) S -код;

г) F -код;

д) С или С+.

4. Совокупность чисел, определяющих положение какой-либо точки, называется:

а) координатами точки;

б) системой координат;

в) радиальной координатой;

г) полярной осью.

5. Комплекс определений, реализующий метод координат, т. е. способ определять положение точки или тела с помощью чисел или других символов называется:

а) системой координат;

б) координатами точки;

в) радиальной координатой;

г) полярной осью.

Задачи (упражнения, ситуационные задачи и т. д.)
с образцами выполнения, решения

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то