Способ замены плоскостей проекций позволяет. Основные задачи, решаемые способом замены плоскостей проекций. Основные задачи замены плоскостей проекций

Изменение взаимного положения изучаемого объекта и плоскостей проекций достигается путем замены одной из плоскостей П 1 или П 2 новой плоскостями П 4 (рис. 148). Новая плоскость всегда выбирается перпендикулярно оставшейся плоскости проекций.

Для решения некоторых задач может потребоваться двойная замены плоскостей проекций (рис. 149). Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1 : Определить натуральную величину отрезка АВ прямой общего положений (рис. 148). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости.

Выберем новую плоскость проекций П 4 , параллельно отрезку АВ и перпендикулярно плоскости П 1 . Введением новой плоскости, переходим из системы плоскостей П 1 П 2 в систему П 1 П 4 , причем в новой системе плоскостей проекция отрезка А 4 В 4 будет натуральной величиной отрезка АВ .

Задача 2 : Определить расстояние от точки А до прямой общего положения, заданной отрезком ВС (рис._149).

Понятие многогранника.

Многогранники – замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Вершины и стороны многогранников являются вершинами и ребрами многогранников. Они образуют пространственную сетку. Если вершины и ребра многогранника находятся по одну сторону плоскости любой из его граней, то многогранник называют выпуклым, все его грани – выпуклые.

Из всего многообразия многогранников наибольший практический интерес представляют призмы, пирамиды, правильные многогранники и их разновидности.

Многогранник, две грани которого n-угольники в параллельных плоскостях, а остальные n-граней - параллелограммы, называется n-угольной призмой. Многогранники являются основаниями призмы, а параллелограммы – боковыми гранями призмы.

Многогранник, у которого одна из граней – произвольный многоугольник, а остальные грани – треугольники, имеющие общую вершину, называются пирамидой. Грань–многоугольник называют основанием призмы, а треугольники – боковыми гранями пирамиды. Общая вершина треугольников называется особой вершиной пирамиды (обычно, просто вершиной).



Если пирамиду отсечь плоскостью параллельной основанию, то получим усеченную пирамиду.

Многогранник называется метрически правильным, если все его грани являются правильными многоугольниками. К ним относятся куб, тетраэдр, октаэдр, икосаэдр, додекаэдр.

Под изображением многогранников на чертеже будем понимать изображение ограничивающей его многогранной поверхности, т.е. изображение совокупности составляющих ее многогранников. Графически простую многогранную поверхность удобно задавать проекциями ее сетки.

Построение проекций:

Построение проекций многогранников

Построение проекции многогранника на некоторой плоскости сводится к построению проекций точек. Например, проецируя пирамиду SABC на пл.я 2 (рис. 256, слева), мы строим проекции вершин S, А, В и С и, как следствие, проекции основания ABC, граней SAB, SBC, SAC, ребер SA, SB и др.

Также, проецируя трехгранный угол ") с вершиной S (рис. 256, справа), мы, помимо вершины S, берем на ребрах угла по одной точке (К, М, N) и проецируем их

на пл. я 2 ; в результате получаем проекции ребер и граней (плоских углов) трехгранного угла и В целом самый угол.

На рис. 257 изображены многогранное тело ACBB 1 D... (т. е. часть пространства, ограниченного со всех сторон плоскими фигурами - многоугольниками) и его проекция на пл. я 1 - фигура A"C"F . Таким образом, решение рассмотренной задачи преобразования комплексного чертежа представляет собой еще один способ нахождения натуральной величины отрезка прямой общего положения.

Задача 2. Прямую общего положения необходимо преобразовать в положение проецирующей прямой (рис. 41).

Решение. Задача решается путем двух преобразований, поскольку нужно сделать две замены плоскостей проекций: первой прямая общего положения переводится в положение прямой уровня, а второй полученная прямая уровня переводится в проецирующую. Первое преобразование представляет собой решение рассмотренной выше задачи. Т.к. вводимая во втором преобразовании плоскость проекций (П 5) является новой горизонтальной плоскостью проекций, точка А 5 располагается на линии проекционной связи А 4 А 5 на расстоянии, равном величине координаты Y точки А в системе плоскостей проекций П 1 -П 4 .

Овладев алгоритмом решения приведенной задачи, можно легко найти расстояния между параллельными и скрещивающимися прямыми, от точки до плоскости, а также натуральную величину двугранного угла (представив линию пересечения двух плоскостей в виде проецирующей прямой).

Задача 3. Перевести плоскость общего положения, заданную треугольником ABC, в проецирующую (рис. 42).

Решение. Плоскость, заданная любым способом, представима как множество соответствующих прямых уровня - либо ее горизонталей, либо фронталей. Поэтому преобразования нужно проводить так, чтобы прямые уровня плоскости спроецировались в точки. Тогда плоскость спроецируется в совокупность точек, расположенных на одной прямой. Следовательно, если в заданной плоскости общего положения провести прямые какого-либо уровня, то, расположив новую плоскость проекций перпендикулярно горизонтальной проекции горизонтали или фронтальной проекции фронтали плоскости, можно получить соответствующую проецирующую плоскость (рис. 42).

Такой подход позволяет находить расстояния от точки до прямой, между плоскостью и параллельной ей прямой, между параллельными плоскостями.

Задача 4. Плоскость общего положения, заданную треугольником ABC, перевести в положение плоскости уровня (рис. 43).

Решение. Задача решается с помощью двух преобразований. Первым плоскость общего положения переводится в положение проецирующей (решение исходной задачи 3, изложенное выше), а вторым полученная проецирующая плоскость переводится в положение плоскости уровня (на рис. 42 это плоскость горизонтального уровня). Точки А 5 , В 5 и C s расположены от оси X, разделяющей плоскости П 4 и П 5 , на расстояниях, равных величинам координат Y для точек А, В и С в системе плоскостей проекций П 1 -П 4 .

Решение рассмотренной задачи позволяет находить натуральные величины плоских фигур (следовательно, сторон многоугольников и плоских углов). Решение этой же задачи методом плоскопараллельного переноса приведено на рис. 39.

Вопросы

1. Способы преобразования чертежа.

2. В чем заключается способ замены плоскостей?

3. Прямая какого положения используется при определении натуральной величины отрезка способы вращения?

4. Суть плоско-параллельного переноса..

5. сколько раз надо вращать плоскую фигуру вокруг проецирующей прямой для определения натуральной величины?

Тесты к теме « Четыре исходные задачи преобразования чертежа»

1. Как располагается дополнительная плоскость проекций относительно прямой при определении натуральной величины отрезка?

а) параллельно

б) перпендикулярно

в) произвольно

2. Как располагается дополнительная плоскость проекций относительно исходных плоскостей проекций?

а) перпендикулярно одной плоскости проекции

б) перпендикулярно двум плоскостям проекции

в) произвольно

3. Как располагается новая ось относительно проекций отрезка прямой при определении натуральной величины отрезка?

а) параллельно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

б) перпендикулярно проекции отрезка, расположенной в плоскости перпендикулярной к дополнительной

в) произвольно

4. Сколько преобразований необходимо для определения натуральной величины плоской фигуры?

5. Сколько необходимо ввести дополнительных плоскостей проекции для преобразования прямой общего положения в проецирующую?

Этот метод заключается в том, что заданные в пространстве геометрические фигуры не изменяют своего положения, а в системе плоскостей проекций V и H последовательно заменяют одну, две и более плоскостей проекций. При этом вновь введёная плоскость проекций должна быть перпендикулярна остающейся плоскости проекций, а относительно плоских геометрических фигур она должна быть поставлена в такое положение, чтобы эти фигуры были параллельны или перпендикулярны по отношению к ней.

Переход от некоторой системы плоскостей проекций к новой может быть осуществлён по одной из схем:

1. 2.

Схемы показывают, что одновременно меняется только одна плоскость проекций V (или H), другая плоскость H (или V) остаётся неизменной.

1.1 Замена фронтальной плоскости проекций.

Пусть в системе плоскостей дана точка А и указаны её проекции А 1 А 2 .

Проследим как изменится положение проекций точки А, если плоскость V заменить новой плоскостью V 1 (V 1 H).

Плоскость V 1 пересекается с плоскостью Н по прямой x 1 , которая определяет новую ось проекций. Положение горизонтальной проекции А 1 точки А остаётся без изменений, так как точка А и плоскость Н не меняли своего положения в пространстве.

Для нахождения нофой фронтальной проекции точки А - А 4 достаточно спроецировать ортогонально точку А на плоскость V 1 . Расстояние новой фронтальной проекции А 4 точки А от новой оси x 1 равно расстоянию от старой фронтальной проекции А 2 точки А до старой оси х.

|А 4 х 1 |=|А 2 х|=|АА 1 |.

При построении комплексного чертежа новая плоскость проекций V 1 вращением вокруг новой оси х 1 совмещается с остающейся плоскостью Н. Направление вращения не влияет на результат решения задачи. Вращение следует делать так, чтобы новые проекции не накладывались на старые.

1.2 Замена горизонтальной плоскости проекций.

Замена горизонтальной плоскости проекций Н новой плоскостью Н 1 и построение новых проекций точки А в системеосуществляется аналогично рассмотренному случаю. Теперь без изменения остаётся фронтальная проекция точки, а для нахождения новой горизонтальной проекции А 4 точки А необходимо из старой фронтальной проекции точки опустить перпендикуляр (провести линию связи) на новую ось х 1 и отложить на нём от точки пересечения с осью х 1 отрезок равный расстоянию старой горизонтальной проекции от старой оси х.

|А 4 х 1 |=|А 1 х|=|АА 2 |.

1.3 Основные задачи замены плоскостей проекций.

Решение всех задач методом замены плоскостей проекций сводится к решению 4-х основных задач:

Первая задача: Заменить плоскость проекций так, чтобы прямая общего положения стала прямой уровня.

Вторая задача: Заменить плоскость проекций так, чтобы прямая уровня стала проецирующей прямой.

Решим обе задачи совместно:

Решение первой задачи: Пусть задана прямая общего положения отрезком [АВ]. Заменим плоскость V на V 1 (V 1 H)(V 1 )x 1 x 1 x 1 B 2 B x =B x1 B 4 A 2 A x =A x1 A 4 |А 4 B 4 |=|АB|- угол наклона АВ к плоскости Н.

Решение второй задачи: Заменим плоскость Н на Н 1 (Н 1 V 1)(H 1 )x 2 A x2 A 5 =B x2 B 5 =A 1 A x1 =B 1 B x1

Таким преобразованием можно решать задачи об определении истинной величины отрезка и углов наклона его к плоскостям проекций.

Совместное рассмотрение первой и второй задач позволяет решать задачи об определении:

    расстояния от точки до прямой

    расстояния между двумя параллельными прямыми

    расстояния между скрещивающимися прямыми

Третья задача: Заменить плоскость проекций так, чтобы плоскость общего положения стала проецирующей плоскостью.

Четвёртая задача: Заменить плоскость проекций так, чтобы проецирующая плоскость стала плоскостью уровня.

Решим обе задачи совместно:

Решение третьей задачи: Пусть задана плоскость общего положения Р(ABC) Заменим V на V 1 (V 1 H)(V 1 P) x 1 - угол наклона плоскости Р к плоскости Н.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то