Строение космического корабля. Обитаемые космические корабли - путь в космос - металл - железо. Космические корабли России и

Сегодня полеты в космос не относятся к фантастическим историям, но, к сожалению, современный космический корабль еще очень сильно отличается от тех, которые показывают в фильмах.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Космические корабли России и

Космические корабли будущего

Космический корабль: какой он

На

Космический корабль, как он работает?

Масса современных космолетов напрямую связана с тем, как высоко они летают. Главная задача пилотируемых космолетов ‒ безопасность.

Спускаемый аппарат СОЮЗ стал первой космической серией Советского Союза. В этот период между СССР и США шла гонка вооружения. Если сравнивать размеры и подход к вопросу строительства, то руководство СССР делало все для скорейшего покорения космоса. Понятно, почему сегодня не строят аналогичные аппараты. Вряд ли кто-то возьмется строить по схеме, в которой отсутствует личное пространство космонавтов. Современные космолеты оборудованы и комнатами для отдыха экипажа, и спускаемой капсулой, главной задачей которой является в тот момент, как осуществляется посадка, сделать ее максимально мягкой.

Первый космический корабль: история создания

Отцом космонавтики справедливо считается Циолковский. На основе его учений Годдрадпостроил ракетный двигатель.

Ученые, которые трудились в Советском Союзе, стали первыми, кто сконструировал и смог запустить искусственный спутник. Также они стали первыми, кто изобрел возможность запуска в космос живого существа. Штаты осознают, что Союз стал первым, кто создал летательный аппарат, способный выйти в космос с человеком. Отцом ракетостроения справедливо называют Королева, который вошел в историю как тот, кто придумал, как преодолеть земное притяжение, и смог создать первый пилотируемый космический корабль. Сегодня даже малыши знают, в каком году запустили первый корабль с человеком на борту, но мало кто помнит о вкладе Королева в этот процесс.

Экипаж и его безопасность во время полета

Главная задача сегодня — безопасность экипажа, ведь он проводит много времени на высоте полета. При строении летательного устройства важно, из какого металла его делают. В ракетостроении используются следующие типы металлов:

  1. Алюминий ‒ позволяет значительно увеличить размеры космолета, поскольку отличается легкостью.
  2. Железо ‒ замечательно справляется со всеми нагрузками на корпус корабля.
  3. Медь ‒ обладает высокойтеплопроводимостью.
  4. Серебро ‒ надежно связывает медь и сталь.
  5. Из титановых сплавов изготавливают баки для жидкого кислорода и водорода.

Современная система жизнеобеспечения позволяет создать привычную для человека атмосферу. Многие мальчишки видят, как они летают в космосе, забывая об очень большой перегрузке космонавта при старте.

Самый большой космический корабль в мире

Среди боевых кораблей большой популярностью пользуются истребители и перехватчики. Современный грузовой корабль имеет следующую классификацию:

  1. Зонд — это исследовательский корабль.
  2. Капсула — грузовой отсек для доставки или спасательных операций экипажа.
  3. Модуль — на орбиту выводится беспилотным носителем. Современные модули делятся на 3 категории.
  4. Ракета. Прототипом для создания послужили военные разработки.
  5. Челнок — многоразовые конструкции для доставки необходимого груза.
  6. Станции — самые большие космические корабли. Сегодня в открытом космосе находятся не только русские, но и французские, китайские и другие.

Буран — космический корабль, вошедший в историю

Первым космическим кораблем, вышедшим в космос, стал Восток. После федерация ракетостроения СССР начала выпуск кораблей Союз. Намного позже стали выпускать Клиперы и Русь. На все эти пилотируемые проекты федерация возлагает огромные надежды.

В 1960 году корабль Восток своим полетом доказал возможность выхода человека в космос. 12 апреля 1961 года Восток 1 совершил виток вокруг Земли. А вот вопрос, кто летал на корабле Восток 1, почему-то вызывает затруднение. Может быть дело в том, что мы просто не знаем, что свой первый полет Гагарин совершил именно на этом корабле? В том же году впервые на орбиту вышел корабль Восток 2, в котором находилось сразу два космонавта, один из которых вышел за пределы корабля в космосе. Это был прогресс. А уже в 1965 году Восход 2 смог выйти в открытый космос. История корабля восход 2 была экранизирована.

Восток 3 установил новый мировой рекорд по времени пребывания корабля в космосе. Последним кораблем серии стал Восток 6.

Американский шатл серии Аполлон открыл новые горизонты. Ведь в 1968 Аполлон 11 смог первым приземлиться на Луну. Сегодня существует несколько проектов по разработке космопланов будущего, такие как Гермес и Колумб.

Салют — серия межорбитальных космических станций Советского Союза. Салют 7 известна тем, что потерпела крушение.

Следующим космолетом, история которого вызывает интерес, стал Буран, кстати, интересно, где он сейчас находится. В 1988 году он совершил свой первый и последний полет. После многоразовых разборов и перевозок путь передвижения Бурана потерялся. Известное последнее местонахождение космического корабля Буранв Сочи, работы по нему законсервированы. Однако буря вокруг этого проекта до сих пор не утихла, и дальнейшая судьба заброшенного проекта Буран вызывает интерес у многих. А в Москве внутри макета космолета Буран на ВДНХ создан интерактивный музейный комплекс.

Джемини — серия кораблей американских конструкторов. Заменили проект Меркурий и смогли сделать спираль на орбите.

Американские корабли с названием Спейсшатл стали своеобразными челноками, совершая более 100 полетов между объектами. Вторым Спейсшатлом стал Челенджер.

Не может не заинтересовать история планеты Нибиру, которая признана кораблем-надзирателем. Нибиру уже дважды приближалась на опасное расстояние к Земле, но оба раза столкновения удалось избежать.

Драгон — космолет, который в 2018 году должен был совершить полет на планету Марс. В 2014 году федерация, ссылаясь на технические характеристики и состояние корабля Дракон, отложила запуск. Не так давно произошло еще одно событие: компания Боинг сделала заявление, что также начала разработки по созданию марсохода.

Первым в истории многоразовым кораблем универсалом должен был стать аппарат под названием Заря. Заря — это первая разработка транспортного корабля многоразового использования, на который федерация полагала очень большие надежды.

Прорывом считается возможность использования ядерных установок в космосе. Для этих целей начались работы по транспортно-энергетическому модулю. Параллельно ведутся разработки по проекту Прометей — компактному ядерному реактору для ракет и космолетов.

Китайский корабль Шэньчжоу 11 стартовал в 2016 году с двумя астронавтами, которые должны были провести в космосе 33 дня.

Скорость космического корабля (км/ч)

Минимальной скоростью, с которой можно выйти на орбиту вокруг Земли считается 8 км/с. Сегодня нет надобности разрабатывать самый быстрый в мире корабль, поскольку мы находимся в самом начале космического пространства. Ведь максимальная высота, которой мы смогли достичь в космосе, всего 500 км. Рекорд самого быстрого передвижения в космосе был установлен в 1969 году, и пока побить его не удалось. На космическом корабле Аполлон 10 трое космонавтов, побывав на орбите Луны, возвращались домой. Капсула, которая должна была доставить их из полета, сумела развить скорость 39,897 км/ч. Для сравнения давайте рассмотрим, с какой скоростью летит космическая станция. Максимально она может развиться до 27 600 км/ч.

Заброшенные космические корабли

Сегодня для космолетов, пришедших в негодность, создали кладбище втихом океане, где могут найти свой последний приют десятки заброшенных космических кораблей. Катастрофы космических кораблей

В космосе случаются катастрофы, часто забирающие жизни. Наиболее частыми, как ни странно, являются аварии, которые происходят из-за столкновения с космическим мусором. При столкновении орбита движения объекта смещается и становится причиной крушения и повреждений, часто становящихся причиной взрыва. Самой известной катастрофой является гибель пилотируемого американского корабля Челленджер.

Ядерный двигатель для космических кораблей 2017

Сегодня ученые работают над проектами по созданию атомного электродвигателя. Эти разработки подразумевают покорение космоса с помощью фотонных двигателей. Российские ученные планируют уже в скором будущем приступить к испытаниям термоядерного двигателя.

Космические корабли России и США

Стремительный интерес к космосу возник в годы Холодной войны между СССР и США. Американские ученые признали в российских коллегах достойных соперников. Советское ракетостроение продолжало развиваться, и после распада государства его приемником стала Россия. Конечно, космолеты, накоторых летают российские космонавты, значительно отличаются от первых кораблей. Более того, сегодня, благодаря успешным разработкам американских ученых, космические корабли стали многоразовыми.

Космические корабли будущего

Сегодня все больший интерес вызывают проекты, в результате которых человечество сможет совершать более длительные путешествия. Современные разработки уже готовят корабли к межзвездным экспедициям.

Место, откуда запускают космические корабли

Увидеть своими глазами запуск космического корабля на старте — мечта многих. Возможно, это связано с тем, что первый запуск не всегда приводит к желаемому результату. Но благодаря Интернету мы можем увидеть, как взлетает корабль. Учитывая тот факт, что наблюдающим за запуском пилотируемого корабля следует находиться достаточно далеко, мы можем представить, что находимся на взлетной площадке.

Космический корабль: какой он внутри?

Сегодня, благодаря музейным экспонатам, мы воочию можем увидеть устройство таких кораблей, как Союз. Конечно, изнутри первые корабли были очень простыми. Интерьер более современных вариантов выдержан в спокойных тонах. Устройство любого космического корабля обязательно пугает нас множеством рычажков и кнопочек. И это добавляет гордости за тех, кто смог запомнить, как устроен корабль, и, тем более, научился управлять им.

На каких космических кораблях летают сейчас?

Новые космические корабли своим внешним видом подтверждают, что фантастика стала действительностью. Сегодня никого уже не удивишь тем, что стыковка космических кораблей — реальность. И мало кто помнит о том, что первая в мире такая стыковка произошла еще в далеком 1967 году...

Приборная панель корабля «Восток-1» Ю. А. Гагарина. Центральный Музей Вооруженных Сил, Москва

Общая масса космического корабля достигала 4,73 тонны, длина (без антенн) - 4,4 м, а максимальный диаметр - 2,43 м.

Корабль состоял из сферического спускаемого аппарата (массой 2,46 тонны и диаметром 2,3 м) также выполняющего функции орбитального отсека и конического приборного отсека (массой 2,27 тонны и максимальным диаметром 2,43 м). Масса теплозащиты от 1.3 тонны до 1.5 тонн. Отсеки механически соединялись между собой при помощи металлических лент и пиротехнических замков. Корабль оснащался системами: автоматического и ручного управления, автоматической ориентации на Солнце, ручной ориентации на Землю, жизнеобеспечения (рассчитаной на поддержание внутренней атмосферы, близкой по своим параметрам к атмосфере Земли в течение 10 суток), командно-логического управления, электропитания, терморегулирования и приземления. Для обеспечения задач по работе человека в космическом пространстве корабль снабжался автономной и радиотелеметрической аппаратурой для контроля и регистрации параметров, характеризующих состояние космонавта, конструкции и систем, ультракоротковолновой и коротковолновой аппаратурой для двусторонней радиотелефонной связи космонавта с наземными станциями, командной радиолинией, программно-временным устройством, телевизионной системой с двумя передающими камерами для наблюдения за космонавтом с Земли, радиосистемой контроля параметров орбиты и пеленгации корабля, тормозной двигательной установкой ТДУ-1 и другими системами.

Вес космического корабля вместе с последней ступенью ракеты-носителя составлял 6,17 тонны, а их длина в связке - 7,35 м.

При разработке спускаемого аппарата конструкторами была выбрана осесимметричная сферическая форма, как наиболее хорошо изученная и имеющая стабильные аэродинамические характеристики для всех диапазонов углов атаки на разных скоростях движения. Это решение позволяло обеспечить приемлемую массу тепловой защиты аппарата и реализовать наиболее простую баллистическую схему спуска с орбиты. В тоже время, выбор баллистической схемы спуска обуславливал высокие перегрузки, которые предстояло испытать человеку, работающему на борту корабля.

Спускаемый аппарат имел два иллюминатора, один из которых размещался на входном люке, чуть выше головы космонавта, а другой, оснащённый специальной системой ориентации, в полу у его ног. Космонавт одетый в скафандр, размещался в специальном катапультируемом кресле. На последнем этапе посадки, после торможения спускаемого аппарата в атмосфере, на высоте 7 км, космонавт катапультировался из кабины и совершал приземление на парашюте. Кроме того, была предусмотрена возможность приземления космонавта внутри спускаемого аппарата. Спускаемый аппарат имел собственный парашют, однако не был оснащён средствами выполнения мягкой посадки, что грозило оставшемуся в нём человеку серъёзным ушибом при совместном приземлении.



Аппаратура кораблей «Восток» была выполнена как можно более простой. Манёвр возвращения обычно обрабатывался по автоматической команде, передаваемой по радио с Земли. С целью горизонтальной ориентации корабля использовались инфракрасные датчики. Выравнивание вдоль оси орбиты выполнялось при помощи звёздных и солнечных датчиков ориентации.

В случае отказа автоматических систем космонавт мог перейти на ручное управление. Это было возможно за счёт использования оригинального оптического ориентатора «Взор», установленного на полу кабины. На иллюминаторе размещалась кольцевая зеркальная зона, а на специальном матовом экране были нанесены стрелки, указывающие направление смещения земной поверхности. Когда космический корабль был правильно сориентирован относительно горизонта все восемь визиров зеркальной зоны освещались солнцем. Наблюдение земной поверхности через центральную часть экрана («бег Земли») позволяло определить направление полёта.

Решить, когда следует начать манёвр возвращения космонавту помогал другой прибор - небольшой глобус с часовым механизмом, который показывал текущее положение корабля над Землёй. Зная исходную точку положения можно было с относительной точностью определить место предстоящей посадки.

Эта ручная система могла быть использована только на освещённой части орбиты. Ночью Земля не могла наблюдаться через «Взор». Автоматическая система ориентации должна была иметь возможность работать в любое время.



Корабли «Восток» не были приспособлены для полётов человека на Луну, а также не допускали возможности полёта людей не прошедших специальной подготовки. Во многом это обуславливалось конструкцией спускаемого аппарата корабля, ласково именуемого Шарик . Сферическая форма спускаемого аппарата не предусматривала использования двигателей ориентации. Аппарат походил на шар, основной вес которого был сконцентрирован в одной части, таким образом, при движении по баллистической траектории он автоматически разворачивался тяжёлой частью вниз. Баллистический спуск означал восьмикратную перегрузку при возвращении с земной орбиты и двадцатикратную при возвращении от Луны. Похожим баллистическим аппаратом была капсула «Меркурий»; корабли «Джемини», «Аполлон» и «Союз» благодаря своей форме и смещённому центру тяжести позволяли снизить испытываемые перегрузки (3 G для возвращения с околоземной орбиты и 8 G при возвращении с Луны), и обладали достаточной манёвренностью для изменения точки посадки.

Советские корабли «Восток» и «Восход» также, как американский «Меркурий» не умели выполнять орбитальные манёвры, допуская лишь выполнение поворотов относительно основных осей. Повторный запуск двигательной установки не предусматривался, она использовалась лишь с целью выполнения возвратного тормозного манёвра. Тем не менее, Сергей Павлович Королёв перед началом разработки «Союза» рассматривал возможность создания манёвренного «Востока». Этот проект подразумевал стыковку корабля со специальными разгонными модулями, что в перспективе позволяло использовать его в задаче по облёту Луны. Позднее идея манёвренной версии корабля «Восток» была реализована в разведывательных спутниках «Зенит» и специализированных спутниках «Фотон».

Пилоты космических кораблей «Восток»

Так ли просто засунуть человека в банку или об устройстве пилотируемых космических кораблей 3 января, 2017

Космический корабль. Наверняка многие из вас, услышав это словосочетание, представляют себе нечто огромное, сложное и густонаселенное, целый город в космосе. Так когда-то представлял себе космические корабли и я, да и многочисленные фантастические фильмы и книги этому активно способствуют.

Наверное, это хорошо, что авторов фильмов ограничивает только фантазия в отличие от инженеров-конструкторов космической техники. Хотя бы в кино мы можем насладиться гигантскими объемами, сотнями отсеков и тысячами человек экипажа...

Настоящий космический корабль размерами вовсе не впечатляет:

На фотографии советский космический корабль Союз-19, снятый американскими астронавтами из корабля Аполлон. Видно, что корабль довольно маленький, а учитывая, что обитаемый объем занимает далеко не весь корабль, очевидно, что там должно быть довольно тесно.

Оно и не удивительно: большие размеры - это большая масса, а масса - враг номер один в космонавтике. Поэтому конструкторы космических кораблей стараются сделать их как можно легче, нередко, в ущерб комфорту экипажа. Обратите внимание, как тесно в корабле Союз:

Американские корабли в этом плане особо не отличаются от русских. Например, вот фотография Эда Уайта и Джима Мак-Дивита в космическом корабле Джемини.

Хоть какой-то свободой передвижений могли похвастаться разве что экипажи кораблей Спейс Шаттл. В их распоряжении были два относительно просторных отсека.

Полетная палуба (фактически кабина управления):

Средняя палуба (это бытовой отсек со спальными местами, туалетом, кладовой и шлюзовой камерой):

Аналогичный по габаритам и планировке советский корабль Буран, к сожалению, ни разу не летал в пилотируемом режиме, как и ТКС, который до сих пор обладает рекордным обитаемым объемом среди всех когда-либо проектировавшихся кораблей.

Но обитаемый объем - далеко не единственное требование, предъявляемое космическому кораблю. Доводилось мне слышать высказывания наподобие такого: "Засунули человека в алюминиевую банку и отправили крутиться вокруг Земли-матушки". Данная фраза, конечно же, некорректна. Так чем же космический корабль отличается от простой металлической бочки?

А тем, что космический корабль должен:
- Обеспечивать экипажу пригодную для дыхания газовую смесь,
- Удалять из обитаемого объема выдыхаемые экипажем углекислый газ и пары воды,
- Обеспечивать приемлемый для экипажа температурный режим,
- Иметь герметичный объем, достаточный для жизнедеятельности экипажа,
- Обеспечивать возможность управления ориентацией в пространстве и (опционально) возможность осуществления орбитальных маневров,
- Иметь необходимые для жизнедеятельности экипажа запасы пищи и воды,
- Обеспечивать возможность безопасного возврата экипажа и грузов на землю,
- Быть как можно легче,
- Иметь систему аварийного спасения, позволяющую вернуть экипаж на землю при аварийной ситуации на любом этапе полета,
- Быть очень надежным. Любой один отказ оборудования не должен приводить к отмене полета, любой второй отказ не должен угрожать жизни экипажа.

Как видите, это уже не простая бочка, а сложный технологичный аппарат, напичканный множеством разнообразной аппаратуры, имеющий двигатели и запас топлива к ним.

Вот для примера макет советского космического корабля первого поколения Восток.

Он состоит из герметичной сферической капсулы и конического приборно-агрегатного отсека. Такую компоновку, при которой большинство приборов вынесено в отдельный негерметичный отсек, имеют почти все корабли. Это необходимо для экономии массы: при размещении всех приборов в герметичном отсеке, этот отсек получился бы довольно большим, а поскольку ему нужно удерживать внутри себя атмосферное давление и выдерживать значительные механические и тепловые нагрузки во время входа в плотные слои атмосферы при спуске на землю, стенки его должны быть толстыми, прочными, что делает всю конструкцию очень тяжелой. А негерметичному отсеку, который при возврате на землю отделится от спускаемого аппарата и сгорит в атмосфере, прочные тяжелые стенки не нужны. Спускаемый аппарат без лишних при возврате приборов получается меньше и соответственно легче. Сферическая форма ему придается тоже для уменьшения массы, ведь из всех геометрических тел одинакового объема сфера имеет самую маленькую площадь поверхности.

Единственный космический корабль, где вся аппаратура была помещена в герметичную капсулу, - американский Меркурий. Вот его фото в ангаре:

В этой капсуле мог поместиться один человек и то с трудом. Поняв неэффективность такой компоновки, американцы свою следующую серию кораблей Джемини делали уже с отделяемым негерметичным приборно-агрегатным отсеком. На фотографии это задняя часть корабля белого цвета:

Кстати, в белый цвет этот отсек покрашен не просто так. Дело в том, что стенки отсека пронизаны множеством трубок, по которым циркулирует вода. Это система отвода избыточного тепла, получаемого от Солнца. Вода забирает тепло изнутри обитаемого отсека и отдает его на поверхность приборно-агрегатного отсека, откуда тепло излучается в пространство. Чтобы эти радиаторы меньше грелись под прямыми солнечными лучами, их покрасили в белый цвет.

На кораблях Восток радиаторы были расположены на поверхности конического приборно-агрегатного отсека и закрывались заслонками, похожими на жалюзи. Открывая разное количество заслонок, можно было регулировать теплоотдачу радиаторов, а значит и температурный режим внутри корабля.

На кораблях Союз и их грузовых аналогах Прогресс система отвода тепла аналогична Джемини. Обратите внимание на цвет поверхности приборно-агрегатного отсека. Разумеется, белый:)

Внутри приборно-агрегатного отсека расположены маршевые двигатели, маневровые двигатели малой тяги, запас топлива для всего этого добра, аккумуляторы, запасы кислорода и воды, часть бортовой электроники. Снаружи обычно устанавливают антенны радиосвязи, антенны сближения, различные датчики ориентации и солнечные батареи.

В спускаемом аппарате, который одновременно служит кабиной космического корабля, расположены только те элементы, которые нужны при спуске аппарата в атмосфере и мягкой посадки, а также то, что должно быть в прямом доступе для экипажа: пульт управления, радиостанция, аварийный запас кислорода, парашюты, кассеты с гидроксидом лития для удаления углекислого газа, двигатели мягкой посадки, ложементы (кресла для космонавтов), аварийно-спасательные комплекты на случай приземления в нерасчетной точке, ну и, разумеется, сами космонавты.

В кораблях Союз есть еще один отсек - бытовой:

В нем находится то, что нужно в длительном полете, но без чего можно обойтись на этапе выведения корабля на орбиту и при приземлении: научные инструменты, запасы пищи, Ассенизационно-санитарное устройство (туалет), скафандры для внекорабельной деятельности, спальные мешки и прочие бытовые предметы.

Известен случай с космическим кораблем Союз ТМ-5, когда для экономии топлива бытовой отсек отстрелили не после выдачи тормозного импульса на сход с орбиты, а до. Только вот тормозного импульса не было: отказала система ориентации, потом не удавалось запустить двигатель. В результате космонавтам пришлось еще на сутки задержаться на орбите, а туалет остался в отстреленном бытовом отсеке. Сложно передать, какие неудобства испытали космонавты за эти сутки, пока, наконец, им не удалось благополучно приземлиться. После этого случая решили забить на такую экономию топлива и бытовой отсек отстреливать вместе с приборно-агрегатным после торможения.

Вот, сколько всяких сложностей оказалось в "банке". Мы еще отдельно пройдемся по каждому типу космических кораблей СССР, США и Китая в следующих статьях. Следите за обновлениями.

Космические корабли «Восток». 12 апреля 1961 г. трехступенчатая ракета-носитель доставила на околоземную орбиту космический корабль «Восток», на борту которого находился гражданин Советского Союза Юрий Алексеевич Гагарин.

Трехступенчатая ракета-носитель состояла из четырех боковых блоков (I ступень), расположенных вокруг центрального блока (II ступень). Над центральным блоком помещена III ступень ракеты. На каждом из блоков I ступени был установлен четырех-камерный жидкостно-реактивный двигатель РД-107, а на II ступени — четырехкамерный реактивный двигатель РД-108. На III ступени был установлен однокамерный жидкостно-реактивный двигатель с четырьмя рулевыми соплами.

Ракета-носитель «Восток»

1 — головной обтекатель; 2 — полезный груз; 3 — кислородный бак; 4 — экран; 5 — керосиновый бак; 6 — управляющее сопло; 7 — жидкостный ракетный двигатель (ЖРД); 8 — переходная ферма; 9 — отражатель; 10 — приборный отсек центрального блока; 11 и 12 — варианты головного блока (с АМС «Луна-1» и с АМС «Луна-3» соответственно).

Лунная Для полета человека
Стартовая масса, т 279 287
Масса полезного груза, т 0,278 4,725
Масса топлива, т 255 258
Тяга двигателя, кН
I ступени (на Земле) 4000 4000
II ступени (в пустоте) 940 940
III ступени (в пустоте) 49 55
Максимальная скорость, м/с 11200 8000

Корабль «Восток» состоял из соединенных вместе спускаемого аппарата и приборно-агрегатного отсека. Масса корабля около 5 т.

Спускаемый аппарат (кабина экипажа) был выполнен в виде шара диаметром 2,3 м. В спускаемом аппарате было установлено кресло космонавта, приборы управления, система жизнеобеспечения. Кресло располагалось таким образом, чтобы возникающая при взлете и посадке перегрузка оказывала на космонавта наименьшее действие.

Космический корабль «Восток»

1 — спускаемый аппарат; 2 — катапультируемое кресло; 3 — баллоны со сжатым воздухом и кислородом; 4 — тормозной ракетный двигатель; 5 — третья ступень ракеты-носителя; 6 — двигатель третьей ступени.

В кабине поддерживалось нормальное атмосферное давление и такой же, как на Земле, состав воздуха. Шлем скафандра был открыт, и космонавт дышал воздухом кабины.

Мощная трехступенчатая ракета-носитель выводила корабль на орбиту с максимальной высотой над поверхностью Земли 320 км и минимальной— 180 км.

Рассмотрим, как устроена система приземления корабля «Восток». После включения тормозного двигателя скорость полета уменьшалась и начиналось снижение корабля.

На высоте 7000 м открывалась крышка люка и из спускаемого аппарата выстреливалось кресло с космонавтом. В 4 км от Земли кресло отделялось от космонавта и падало, а он продолжал спуск на парашюте. На 15-метровом шнуре (фале) вместе с космонавтом спускался неприкосновенный аварийный запас (НАЗ) и лодка, которая автоматически надувалась при посадке на воду.

Схема спуска корабля «Восток»

1 и 2 — ориентация по Солнцу;

4 — включение тормозного двигателя;

5 — отделение приборного отсека;

6 — траектория полета спускаемого аппарата;

7 — катапультирование космонавта из кабины вместе с креслом;

8 — спуск на тормозном парашюте;

9 — ввод в действие основного парашюта;

10 — отделение НАЗа;

11 —посадка;

12 и 13 — открытие тормозного и основного парашютов;

14 — спуск на основном парашюте;

15 — посадка спускаемого аппарата.

Независимо от космонавта на высоте 4000 м раскрывался тормозной парашют спускаемого аппарата и скорость падения его существенно уменьшалась. В 2,5 км от Земли раскрывался основной парашют, плавно опускающий аппарат на Землю.

Космические корабли «Восход». Расширяются задачи космических полетов и соответственно совершенствуются космические корабли. 12 октября 1964 г. сразу три человека поднялись в космос на корабле «Восход»: В. М. Комаров (командир корабля), К. П. Феоктистов (ныне доктор физико-математических наук) и Б. Б. Егоров (врач).

Новый корабль существенно отличался от кораблей серии «Восток». Он вмещал трех космонавтов, имел систему мягкой посадки. «Восход-2» имел шлюзовую камеру для выхода из корабля в открытый космос. Он мог не только спускаться на сушу, но и приводняться. Космонавты находились в первом корабле «Восход» в полетных костюмах без скафандров.

Полет корабля «Восход-2» состоялся 18 марта 1965 г. На борту находился командир летчик-космонавт П. И. Беляев и второй пилот летчик-космонавт А. А. Леонов.

После выхода космического корабля на орбиту была раскрыта шлюзовая камера. Шлюзовая камера развернулась с наружной стороны кабины, образовав цилиндр, в котором мог разместиться человек в скафандре. Изготовлен шлюз из прочной герметичной ткани, и в сложенном состоянии он занимает мало места.

Космический корабль «Восход-2» и схема шлюзования на корабле

1,4,9, 11 — антенны; 2 — телевизионная камера; 3 — баллоны со сжатым воздухом и кислородом; 5 — телевизионная камера; 6 — шлюз до наполнения; 7 — спускаемый аппарат; 8 — агрегатный отсек; 10 — двигатель системы торможения; А — наполнение шлюза воздухом; Б — выход космонавта в шлюз (люк открыт); В — выпуск воздуха из шлюза наружу (люк закрыт); Г — выход космонавта в космос при открытом наружном люке; Д — отделение шлюза от кабины.

Мощная система наддува обеспечила наполнение шлюза воздухом и создание в нем такого же давления, как и в кабине. После того как давление в шлюзе и в кабине выравнялось, А. А. Леонов надел ранец, в котором размещались баллоны с сжатым кислородом, подключил провода связи, открыл люк и «перешел» в шлюз. Покинув шлюз, он удалился на некоторое расстояние от корабля. С кораблем его связывала только тонкая нить фала, человек и корабль движутся рядом.

Двадцать минут А. А. Леонов находился вне кабины, из них двенадцать минут — в свободном полете.

Первый выход человека в космическое пространство позволил получить ценнейшую информацию для последующих экспедиций. Было доказано, что хорошо подготовленный космонавт даже в условиях открытого космоса может выполнять различные задания.

Корабль «Восход-2» был доставлен на орбиту ракетно-космической системой «Союз». Унифицированная система «Союз» начала создаваться под руководством С. П. Королева уже в 1962 г. Она должна была обеспечить не отдельные прорывы в космос, а его планомерное обживание как новой сферы обитания и производственной деятельности.

При создании ракеты-носителя «Союз» основной доработке подверглась головная часть, фактически она была создана заново. Это было вызвано единственным требованием — обеспечить спасение космонавтов при аварии на стартовой площадке и атмосферном участке полета.

«Союз» — третье поколение космических кораблей. Корабль «Союз» состоит из орбитального отсека, спускаемого аппарата и приборно-агрегатного отсека.

В кабине спускаемого аппарата расположены кресла космонавтов. Форма кресла позволяет легче переносить перегрузки, возникающие при взлете и посадке. На кресле расположены ручка управления ориентацией корабля и ручка управления скоростью при маневрировании. Специальный амортизатор смягчает удары, возникающие при посадке.

На «Союзе» имеются две автономно действующие системы жизнеобеспечения: система жизнеобеспечения кабины и система жизнеобеспечения скафандра.

Система жизнеобеспечения кабины поддерживает в спускаемом аппарате и орбитальном отсеке привычные для человека условия: давление воздуха около 101 кПа (760 мм рт. ст.), парциальное давление кислорода около 21,3 кПа (160 мм рт. ст.), температуру 25—30°С, относительную влажность воздуха 40—60%.

Система жизнеобеспечения производит очистку воздуха, собирает и хранит отходы. Принцип работы системы очистки воздуха основан на использовании кислородосодержащих веществ, поглощающих углекислый газ и часть влаги из воздуха и обогащающих его кислородом. Регулирование температуры воздуха в кабине производится с помощью радиаторов, установленных на наружной поверхности корабля.

Ракета-носитель «Союз»

Стартовая масса, т - 300

Масса полезного груза, кг

«Союз» - 6800

«Прогресс» - 7020

Тяга двигателей, кН

I ступени - 4000

II ступени - 940

III ступени - 294

Максимальная скорость, м/с 8000

1— система аварийного спасения (САС); 2 —пороховые ускорители; 3 — корабль «Союз»; 4 — стабилизирующие щитки; 5 и 6 — топливные баки III ступени; 7 — двигатель III ступени; 8 — ферма между II и III ступенями; 9 — бак с окислителем I ступени; 10 — бак с окислителем I ступени; 11 и 12—баки с горючим I ступени; 13 — бак с жидким азотом; 14 — двигатель I ступени; 15 — двигатель II ступени; 16 — камера управления; 7 — воздушный руль.

Автобус подъехал к стартовой позиции. Из него вышли космонавты и направились к ракете. В руке у каждого чемоданчик. Очевидно, многие сочли, что там уложено самое необходимое для дальней дороги. Но если присмотреться внимательно, то можно заметить, что чемоданчик связан с космонавтом гибким шлангом.

Скафандр ведь необходимо непрерывно вентилировать, чтобы удалять выделяемую космонавтом влагу. В чемоданчике находится вентилятор с электроприводом и источник электроэнергии — аккумуляторная батарея.

Вентилятор засасывает воздух из окружающей атмосферы и прогоняет его через вентилирующую систему скафандра.

Подойдя к открытому люку корабля, космонавт отсоединит шланг и войдет в корабль. Заняв свое место в рабочем кресле корабля, он подсоединится к системе жизнеобеспечения скафандра и закроет иллюминатор шлема. С этого момента воздух в скафандр подается вентилятором (150—200 л в мин). Но если давление в кабине начнет падать, то включится аварийная подача кислорода из специально предусмотренных баллонов.

Варианты головного блока

I — с кораблем «Восход-2»; II—с кораблем «Союз-5»; III — с кораблем «Союз-12»; IV — с кораблем «Союз-19»

Космический корабль «Союз Т» создан на базе корабля «Союз». «Союз Т-2» впервые выведен на орбиту в июне 1980 г. экипажем в составе командира корабля Ю. В. Малышева и бортинженера В. В. Аксенова. Новый корабль создан с учетом опыта разработки и эксплуатации КК «Союз» — состоит из орбитального (бытового) отсека с агрегатом стыковки, спускаемого аппарата и приборно-агрегатного отсека новой конструкции. На «Союзе Т» установлены новые бортовые системы, в том числе радиосвязи, ориентации, управления движением, и бортовой вычислительный комплекс. Стартовая масса корабля 6850 кг. Расчетная продолжительность автономного полета 4 суток, в составе орбитального комплекса 120 суток.

С. П. Уманский

1986 «Космонавтика сегодня и завтра»

Как устроена система аварийного спасения экипажа космического корабля aslan wrote in October 24th, 2018

Система аварийного спасения или сокращенно САС это "ракета в ракете", которая венчает шпиль Союза:


Сами же космонавты сидят в нижней части шпиля (которая имеет форму конуса):

САС обеспечивает спасение экипажа как на стартовой площадке, так и на любом участке полета. Тут стоит понимать, что вероятность получить люлей на старте в разы выше, чем в полете. Это как с лампочкой - большинство перегораний происходит в момент включения. Поэтому, первое что делает САС в момент аварии это взлетает в воздух и уносит космонавтов куда-нибудь подальше от распространяющегося взрыва:

Двигатели САС приводят в готовность за 15 минут до старта ракеты.

А вот теперь самое интересное. САС активируется двумя дежурными, которые синхронно нажимают кнопку по команде руководителя полета. Причем команда это обычно название какого-то географического объекта. К примеру, руководитель полета говорит: "Алтай" и дежурные активируют САС. Все как 50 лет назад.

Самое страшное это не приземление, а перегрузка. В новостях со спасенными космонавтами сразу была указана перегрузка - 9g. Это крайне неприятная для обычного человека перегрузка, но для тренированного космонавта не смертельная и даже не опасная. К примеру, в 1975 году Василий Лазарев выхватил перегрузку в 20, а по некоторым данным в 26G. Он не погиб, но последствия поставили крест на карьере.

Как же было сказано, САС уже более 50ти лет. За это время она претерпела множество изменений, но формально основные принципы её работы не изменились. Появилась электроника, множество разных датчиков, повысилась надежность, однако спасение космонавтов по-прежнему выглядит так, как выглядело бы 50 лет назад. Почему? Потому что гравитация, преодоление первой космической скорости и человеческий фактор это величина, по всей видимости неизменная:

Первое успешное тестирование САС провели в 67м году. Вообще-то, пытались облететь Луну беспилотно. Но первый блин вышел комом, поэтому решили заодно САС испытать, чтобы хоть какой-то результат положительный был. Спускаемый аппарат приземлился неповрежденным, а если бы внутри были люди, то они остались бы живы.

А вот так выглядит САС в полете:

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то