Что такое метрология и зачем она нужна человечеству? Метрология - что такое? Основные понятия метрологии Что такое ми в метрологии

Что такое метрология и зачем она нужна человечеству?

Метрология - наука об измерениях

Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Это наука, которая занимается установлением единиц измерений различных физических величин и воспроизведением их эталонов, разработкой методов измерений физических величин, а также анализом точности измерений и исследованием и устранением причин, вызывающим погрешности в измерениях.

В практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются и известны с незапамятных времен измерения таких величин, как длина, объем, вес, время и др. Конечно, методы и средства измерений этих величин в древности были примитивными и несовершенными, тем не менее, без них невозможно представить эволюцию человека разумного.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.
Для обеспечения научно-технического прогресса метрология должна опережать в своем развитии другие области науки и техники, ибо для каждой из них точные измерения являются одним из основных путей их совершенствования.

Задачи науки метрологии

Поскольку метрология изучает методы и средства измерения физических величин с максимальной степенью точности, ее задачи и цели вытекают из самого определения науки. Тем не менее, учитывая колоссальную важность метрологии, как науки, для научно-технического прогресса и эволюции человеческого общества, все термины и определения метрологии, включая ее цели и задачи, стандартизированы посредством нормативных документов - ГОСТ ов.
Итак, основными задачами метрологии (по ГОСТ 16263-70) являются:

· установление единиц физических величин, государственных эталонов и образцовых средств измерений;

· разработка теории, методов и средств измерений и контроля;



· обеспечение единства измерений и единообразных средств измерений;

· разработка методов оценки погрешностей, состояния средств измерения и контроля;

· разработка методов передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

ЛЕКЦИЯ № 1. Метрология

Предмет и задачи метрологии

С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления объема, веса, длины, времени и т. п. Данные подобных измерений помогают освоить количественную характеристику окружающего мира. Крайне важна роль подобных измерений при развитии цивилизации. Сегодня никакая отрасль народного хозяйства не могла бы правильно и продуктивно функционировать без применения своей системы измерений. Ведь именно с помощью этих измерений происходит формирование и управление различными технологическими процессами, а также контролирование качества выпускаемой продукции. Подобные измерения нужны для самых различных потребностей в процессе развития научно-технического прогресса: и для учета материальных ресурсов и планирования, и для нужд внутренней и внешней торговли, и для проверки качества выпускаемой продукции, и для повышения уровня защиты труда любого работающего человека. Несмотря на многообразие природных явлений и продуктов материального мира, для их измерения существует такая же многообразная система измерений, основанных на очень существенном моменте – сравнении полученной величины с другой, ей подобной, которая однажды была принята за единицу. При таком подходе физическая величина расценивается как некоторое число принятых для нее единиц, или, говоря иначе, таким образом получается ее значение. Существует наука, систематизирующая и изучающая подобные единицы измерения, – метрология. Как правило, под метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности.



Происхождение самого термина «метрология» возводя! к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец XX в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Следует отметить и особое участие в создании этой дисциплины Д. И. Менделеева, которому подевалось вплотную заниматься метрологией с 1892 по 1907 гг… когда он руководил этой отраслью российской науки. Таким образом, можно сказать, что метрология изучает:

1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности;

2) измерения физических величин и технических параметров, а также свойств и состава веществ;

3) измерения для контроля и регулирования технологических процессов.

Выделяют несколько основных направлений метрологии:

1) общая теория измерений;

2) системы единиц физических величин;

3) методы и средства измерений;

4) методы определения точности измерений;

5) основы обеспечения единства измерений, а также основы единообразия средств измерения;

6) эталоны и образцовые средства измерений;

7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения. Важным понятием в науке метрологии является единство измерений, под которым подразумевают такие измерения при которых итоговые данные получаются в узаконенных единицах, в то время как погрешности данных измерений получены с заданной вероятностью. Необходимость существования единства измерений вызвана возможностью сопоставления результатов различных измерений, которые были проведены в различных районах, в различные временные отрезки, а также с применением разнообразных методов и средств измерения.

Следует различать также объекты метрологии:

1) единицы измерения величин;

2) средства измерений;

3) методики, используемые для выполнения измерений и т. д.

Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о:

1) физических величинах, их единицах, а также об их измерениях;

2) принципах и методах измерений и о средствах измерительной техники;

3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей;

4) обеспечении единства измерений, эталонах, образцах;

5) государственной метрологической службе;

6) методике поверочных схем;

7) рабочих средствах измерений.

В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений.

Термины

Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по-своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое-либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Россия на сегодняшний момент воспринимает себя частью мировой экономической системы, постоянно идет работа над унификацией терминов и понятий, создается международный стандарт. Это, безусловно, помогает облегчить процесс взаимовыгодного сотрудничества с высокоразвитыми зарубежными странами и партнерами. Итак, в метро логии используются следующие величины и их определения:

1) физическая величина, представляющая собой общее свойство в отношении качества большого количества физических объектов, но индивидуальное для каждого в смысле количественного выражения;

2) единица физической величины, что подразумевает под собой физическую величину, которой по условию присвоено числовое значение, равное единице;

3) измерение физических величин, под которым имеется в виду количественная и качественная оценка физического объекта с помощью средств измерения;

4) средство измерения, представляющее собой техническое средство, имеющее нормированные метрологические характеристики. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;

5) измерительный прибор представляет собой средство измерений, вырабатывающее информационный сигнал в такой форме, которая была бы понятна для непосредственного восприятия наблюдателем;

6) мера – также средство измерений, воспроизводящее физическую величину заданного размера. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;

7) измерительная система, воспринимаемая как совокупность средств измерений, которые соединяются друг с другом посредством каналов передачи информации для выполнения одной или нескольких функций;

8) измерительный преобразователь – также средство измерений, которое производит информационный измерительный сигнал в форме, удобной для хранения, просмотра и трансляции по каналам связи, но не доступной для непосредственного восприятия;

9) принцип измерений как совокупность физических явлений, на которых базируются измерения;

10) метод измерений как совокупность приемов и принципов использования технических средств измерений;

11) методика измерений как совокупность методов и правил, разработанных метрологическими научно-исследовательскими организациями, утвержденных в законодательном порядке;

12) погрешность измерений, представляющую собой незначительное различие между истинными значениями физической величины и значениями, полученными в результате измерения;

13) основная единица измерения, понимаемая как единица измерения, имеющая эталон, который официально утвержден;

14) производная единица как единица измерения, связанная с основными единицами на основе математических моделей через энергетические соотношения, не имеющая эталона;

15) эталон, который имеет предназначение для хранения и воспроизведения единицы физической величины, для трансляции ее габаритных параметров нижестоящим по поверочной схеме средствам измерения. Существует понятие «первичный эталон», под которым понимается средство измерений, обладающее наивысшей в стране точностью. Есть понятие «эталон сравнений», трактуемое как средство для связи эталонов межгосударственных служб. И есть понятие «эталон-копия» как средство измерений для передачи размеров единиц образцовым средствам;

16) образцовое средство, под которым понимается средство измерений, предназначенное только для трансляции габаритов единиц рабочим средствам измерений;

17) рабочее средство, понимаемое как «средство измерений для оценки физического явления»;

18) точность измерений, трактуемая как числовое значение физической величины, обратное погрешности, определяет классификацию образцовых средств измерений. По показателю точности измерений средства измерения можно разделить на: наивысшие, высокие, средние, низкие.

Классификация измерений

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

Однократное измерение – это измерение одной величины, сделанное один раз. Однократные измерения на практике имеют большую погрешность, в связи с этим рекомендуется для уменьшения погрешности выполнять минимум три раза измерения такого типа, а в качестве результата брать их среднее арифметическое.

Многократные измерения – это измерение одной или нескольких величин, выполненное четыре и более раз. Многократное измерение представляет собой ряд однократных измерений. Минимальное число измерений, при котором измерение может считаться многократным, – четыре. Результатом многократного измерения является среднее арифметическое результатов всех проведенных измерений. При многократных измерениях снижается погрешность.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины. Примером такой постоянной во времени физической величины может послужить длина земельного участка.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы.

Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). Результат измерения будет зависеть от того, какая величина принимается за базу сравнения.

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений, и некоторой известной зависимости между данными значениями и измеряемой величиной.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений, которая составлена из уравнений, полученных вследствие измерения возможных сочетаний измеряемых величин.

Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Единицы измерения

В 1960 г. на XI Генеральной конференции по мерам и весам была утверждена Международная система единиц (СИ).

В основе Международной системы единиц лежат семь единиц, охватывающих следующие области науки: механику, электричество, теплоту, оптику, молекулярную физику, термодинамику и химию:

1) единица длины (механика) – метр;

2) единица массы (механика) – килограмм;

3) единица времени (механика) – секунда;

4) единица силы электрического тока (электричество) – ампер;

5) единица термодинамической температуры (теплота) – кельвин;

6) единица силы света (оптика) – кандела;

7) единица количества вещества (молекулярная физика, термодинамика и химия) – моль.

В Международной системе единиц есть дополнительные единицы:

1) единица измерения плоского угла – радиан;

2) единица измерения телесного угла – стерадиан. Таким образом, посредством принятия Международной системы единиц были упорядочены и приведены к одному виду единицы измерения физических величин во всех областях науки и техники, так как все остальные единицы выражаются через семь основных и две дополнительных единицы СИ. Например, количество электричества выражается через секунды и амперы.

Погрешность измерений

В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.

Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.

Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.

Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.

Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из-за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.

Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.

Составляющие погрешности могут также делиться на: методическую, инструментальную и субъективную. Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из-за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из-за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из-за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Есть также такое понятие, как «грубые погрешности или промахи», которые могут появляться из-за ошибочных действий оператора, неисправности СИ или непредвиденных изменений ситуации измерений. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого-либо фактора.

Виды погрешностей

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Погрешности измерений классифицируются по следующим признакам.

По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность вычисляется по следующей формуле:

Q n =Q n ?Q 0 ,

где AQ n – абсолютная погрешность;

Q n – значение некой величины, полученное в процессе измерения;

Q 0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Относительная погрешность вычисляется по следующей формуле:

где?Q – абсолютная погрешность;

Q 0 – настоящее (действительное) значение измеряемой величины.

Относительная погрешность выражается в процентах.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

Выбор средств измерений

При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.

В случае, если допустимая погрешность не предусмотрена в соответствующих нормативных документах, предельно допустимая погрешность измерения должна быть регламентирована в технической документации на изделие.

При выборе средств измерения должны также учитываться:

1) допустимые отклонения;

2) методы проведения измерений и способы контроля. Главным критерием выбора средств измерений является соответствие средств измерения требованиям достоверности измерений, получения настоящих (действительных) значений измеряемых величин с заданной точностью при минимальных временных и материальных затратах.

Для оптимального выбора средств измерений необходимо обладать следующими исходными данными:

1) номинальным значением измеряемой величины;

2) величиной разности между максимальным и минимальным значением измеряемой величины, регламентируемой в нормативной документации;

3) сведениями об условиях проведения измерений.

Если необходимо выбрать измерительную систему, руководствуясь критерием точности, то ее погрешность должна вычисляться как сумма погрешностей всех элементов системы (мер, измерительных приборов, измерительных преобразователей), в соответствии с установленным для каждой системы законом.

Предварительный выбор средств измерений производится в соответствии с критерием точности, а при окончательном выборе средств измерений должны учитываться следующие требования:

1) к рабочей области значений величин, оказывающих влияние на процесс измерения;

2) к габаритам средства измерений;

3) к массе средства измерений;

4) к конструкции средства измерений.

При выборе средств измерений необходимо учитывать предпочтительность стандартизированных средств измерений.

19. Методы определения и учета погрешностей

Методы определения и учета погрешностей измерений используются для того, чтобы:

1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;

2) определить точность полученных результатов, т. е. степень их соответствия настоящему (действительному) значению.

В процессе определения и учета погрешностей оцениваются:

1) математическое ожидание;

2) среднеквадратическое отклонение.

Точечная оценка параметра (математического ожидания или среднеквадратического отклонения) – это оценка параметра, которая может быть выражена одним числом. Точечная оценка является функцией от экспериментальных данных и, следовательно, сама должна быть случайной величиной, распределенной по закону, зависящему от закона распределения для значений исходной случайной величины Закон распределения значений точечной оценки будет зависеть также от оцениваемого параметра и от числа испытаний (экспериментов).

Точечная оценка бывает следующих видов:

1) несмещенная точечная оценка;

2) эффективная точечная оценка;

3) состоятельная точечная оценка.

Несмещенная точечная оценка – это оценка параметра погрешности, математическое ожидание которой равно этому параметру.

Эффективная точечная о

1 ЦЕЛИ И ЗАДАЧИ МЕТРОЛОГИИ,СТАНДАРТИЗАЦИИ И СЕРТИФИКАЦИИ

Метрология, стандартизация, сертификация являются главными инструментами обеспечения качества продукции, работ и услуг – важного аспекта коммерческой деятельности.

Метрология – это учение об измерениях, способах обеспечения их единства и путях приобретения нужной точности. Ключевое положение метрологии – измерение. Согласно ГОСТ 16263–70 измерение – это нахождение значения физической величины с помощью специальных технических средств опытным путем.

Основные задачи метрологии.

К задачам метрологии относятся:

1) разработка общей теории измерений;

2) разработка путей измерений, а также методов установления точности и верности измерений;

3) обеспечение целостности измерений;

4) определение единиц физических величин.

Стандартизация – деятельность, которая устремлена на определение и разработку требований, норм и правил, гарантирующая право потребителя на покупку товаров за устраивающую его цену, должного качества, а также право на благоустроенность и безопасность труда.

Единой задачей стандартизации является охрана интересов потребителей в вопросах качества услуг и продукции. Беря за основу Закон Российской Федерации «О стандартизации», стандартизация имеет такие задачи и цели, как: 1) безвредность работ, услуг и продукции для жизни и здоровья человека, а также для окружающей среды;

2) безопасность различных предприятий, организаций и других объектов с учетом возможности возникновения чрезвычайных ситуаций;

3) обеспечение возможности замены продукции, а также ее технической и информационной совместимости;

4) качество работ, услуг и продукции с учетом уровня достигнутого прогресса техники, технологий и науки;

5) бережное отношение ко всем имеющимся ресурсам;

6) целостность измерений.

Сертификация – это установление соответствующими сертифицирующими органами обеспечения требуемой уверенности, что продукция, услуга или процесс соответствуют определенному стандарту или другому нормативному документу. Сертифицирующими органами может являться лицо или орган, признанные независимыми ни от поставщика, ни от покупателя.

Сертификация сориентирована на достижении следующих целей:

1) оказание помощи потребителям в грамотном выборе продукции или услуги;

2) защита потребителя от некачественной продукции изготовителя;

3) установление безопасности (опасности) продукции, работы или услуг для жизни и здоровья человека, окружающей среды;

4) свидетельствование о качестве продукции, услуги или работы, о которых заявил изготовитель или исполнитель;

5) организация условий для комфортной деятельности организаций и предпринимателя на едином товарном рынке РФ, а также для принятия участия в международной торговле и международном научно-техническом сотрудничестве.

2 ОБЪЕКТЫ И СУБЪЕКТЫ, СРЕДСТВА И МЕТОДЫ НАУКИ

Объект стандартизации – это предмет (продукция, услуга, процесс), подлежащий стандартизации.

Основными задачами стандартизации являются:

1) обеспечение взаимопонимания между разработчиками и заказчиками;

2) установление требований к номенклатуре и качеству продукции на основе стандартизации ее качественных характеристик в интересах потребителя и государства;

3) унификация на основе установления и применения параметрических и типоразмерных рядов, базовых конструкций, конструктивно-унифицированных блочно-модульных составных частей и изделий;

4) установление метрологических норм, правил, положений и требований (метрология – наука об измерениях и размерах);

5) разработка и установление метрологических норм и требований к технологическим процессам;

6) создание и ведение систем классификации и кодирования технико-экономической информации;

7) нормативное обеспечение, содействие в выполнении законодательства РФ методами и средствами стандартизации.

Основными принципами стандартизации являются следующие:

1) разработка нормативных документов по стандартизации должна основываться на учете и анализе таких факторов, как качество продукции, ее экономичность, совместимость, безопасность, необходимость и т. д.;

2) в приоритетном порядке должны разрабатываться стандарты, способствующие обеспечению жизни, здоровью людей, сохранности имущества, охране окружающей среды, обеспечивающие совместимость и взаимозаменяемость продукции;

3) основополагающими факторами при разработке стандартов должны быть взаимное согласие участвующих в ней сторон, соблюдение норм законодательства и т. д.;

4) стандарты следует разрабатывать так, чтобы они не создавали препятствий международной торговле. При разработке стандартов и технических условий следует принимать во внимание проекты и учитывать стандарты международных организаций, а также при необходимости и национальные стандарты других стран.

В стандартизации используются различные методы, как общенаучные, так и специфические. К общенаучным методам относятся следующие:

1) наблюдение;

2) эксперимент;

3) анализ;

4) синтез;

5) моделирование;

6) систематизация;

7) классификация;

8) методы математики и др.

Основными специфическими методами стандартизации являются унификация, ранжирование, ограничения, селекция, симплификация, типизация, заимствование, агрегатирование.

3 ИСТОРИЯ РАЗВИТИЯ СТАНДАРТИЗАЦИИ, СЕРТИФИКАЦИИ И МЕТРОЛОГИИ

Метрология (от греч. слов «метрон» – мера и «логос» – учение) начала развиваться как наука с 1949 г., когда появился научный труд ПетрушевскогоФ. И. « Общая метрология» ч. 1 и 2, СПб.

Первый Указ о калибрах стандартных был издан в 1555 г. во время царствования Ивана Грозного.

При Петре I в период его революционных реформ стандартизация получила широкое развитие:

1) в Москве начали строить типовые дома;

2) было введено деление орудий на три типа – пушки, гаубицы, мортиры;

3) был издан Указ об изготовлении ружей и пистолетов по единому калибру (один калибр для ружей и другой калибр для пистолетов). Начиная с середины XIX в., с развитием всех

отраслей хозяйственного комплекса России (в том числе водного и железнодорожного транспорта) постоянно возрастала роль стандартизации, в частности были введены единые стандартные требования на котлы топочные, трубы металлические и мелкие металлоизделия – крепеж (болты, винты, гайки, заклепки и др.). Наибольшее развитие стандартизация в России получила после 1917 г. В 1918 г. Совет народных комиссаров (СНК РСФСР) издал декрет «О введении в России международной метрической системы мер и весов». В 1925 г. по распоряжению СНК был организован первый комитет по стандартизации при Совете труда и обороны. Первый стандарт ОСТ1 «Пшеница, селекционные сорта зерна, номенклатура» был разработан в 1926 г. и издан 7 мая этого же года. В СССР в 1930–е гг. были разработаны и опубликованы другие стандарты по основным видам продукции, а в 1940 г. по распоряжению Правительства был основан Всесоюзный комитет по стандартизации. В тот же год было опубликовано постановление Правительства СССР «Об ответственности за выпуск недоброкачественной продукции и за несоблюдение стандартов; при этом общесоюзные стандарты (ОСТы) были переведены в ГОСТы с добавлением порядкового номера и года утверждения. В 1965 г. были образованы два института: Всесоюзный научно-исследовательский институт по стандартизации (ВНИИС) и Всесоюзный информационный фонд стандартизации (ВИФС). В 1992 г. в России была введена в действие система обязательной сертификации ГОСТ, а также принят Закон „О защите прав потребителей“. В 1893 г. в нашей стране была создана научная метрологическая организация, большая заслуга в этой области принадлежит Д. И. Менделееву, оценивавшему эту науку как своеобразный мощный рычаг воздействия на экономику.

В настоящее время в России функционирует Федеральное агентство по техническому регулированию и метрологии, действует Закон РФ от 27 апреля 1993 г. „Об обеспечении единства измерения“, регулирующий метрологические нормы и правила.

Задачи метрологии . Метрология - это наука об измерениях, методах и средствах обеспечения их единства и способах достижения заданной точности

Измерения в современном обществе играют важную роль . Они служат не только основой научно-технических знаний , но имеют первостепенное значение для учета материальных ресурсов и планирования , для внутренней и внешней торговли , для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии , для обеспечения безопасности труда и других видов человеческой деятельности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.

Для обеспечения научно-технического прогресса метрология должна опережать в своем развитии другие области науки и техники , так как для каждой из них точные измерения являются одним из основных путей их совершенствования.

Основными задачами метрологии в соответствии с рекомендациями по международной стандартизации (РМГ 29-99) являются:

- установление единиц физических величин (ФВ), государственных эталонов и образцовых средств измерений (СИ).

- разработка теории , методов и средств измерений и контроля;

- обеспечение единства измерений;

- разработка методов оценки погрешностей, состояния средств измерения и контроля;

- разработка методов передачи единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

Краткая история развития метрологии . Потребность в измерениях возникла давно, на заре цивилизации примерно 6000 лет до н.э

В первых документах из Месопотамии и Египта указывается, что система измерения длины базировалась на футе , равном 300 мм (при строительстве пирамид). В Риме фут равнялся 297,1734 мм; в Англии - 304, 799978 мм.

Древние вавилоняне установили год , месяц , час . Впоследствии 1/86400 часть среднего обращения Земли вокруг своей оси (суток ) получила название секунда .

В Вавилоне во II веке до н.э. время измерялось в минах . Мина равнялась промежутку времени (примерно равному двум астрономическим часам). Затем мина сократилась и превратилась в привычную для нас минуту .

Многие меры имели антропометрическое происхождение. Так, в Киевской Руси в обиходе применялся вершок , локоть , сажень .

Важнейшим метрологическим документом в России является Двинская грамота Ивана Грозного (1550 г.). В ней регламентированы правила хранения и передачи размера новой меры сыпучих веществ - осьмины (104,95 л).

Метрологической реформой Петра I в России к обращению были допущены английские меры, получившие особенно широкое распространение на флоте и кораблестроении: дюймы (2,54 см) и футы (12 дюймов).


В 1736 г. по решению Сената была образована Комиссия весов и мер.

Идея построения системы измерений на десятичной основе принадлежит французскому астроному Г. Мутону , жившему в 17 веке.

Позже было предложено принять в качестве единицы длины одну сорокамиллионную часть земного меридиана. На основе единственной единицы - метра - строилась вся система, получившая название метрической .

В России в 1835 г. Указом «О системе Российских мер и весов» были утверждены эталоны длины и массы - платиновая сажень и платиновый фунт .

В 1875 г. 17 государствами, в число которых входила и Россия, была принята метрологическая конвенция «для обеспечения единства и усовершенствования метрической системы» и было решено учредить Международное бюро мер и весов (МБМВ ), которое располагается в городе Севр (Франция).

В этом же году Россия получила платиноиридиевые эталоны массы №12 и №26 и эталоны единицы длины №11 и №28.

В 1892 г. управляющим Депо был назначен Д.И. Менделеев , которое он в 1893 г. преобразует в Главную палату мер и весов - одно из первых в мире научно - исследовательских учреждений метрологического типа .

Величие Менделеева как метролога проявилось в том, что он первым в полной мере осознал прямую зависимость между состоянием метрологии и уровнем развития науки и промышленности. «Наука начинается ... с тех пор, как начинают измерять... Точная наука немыслима без меры », - утверждал знаменитый русский ученый.

Метрическая система в России была введена в 1918 г. декретом Совета Народных Комиссаров «О введении Международной метрической системы мер и весов».

В 1956 г. была подписана межправительственная конвенцияоб учреждении Международной организации законодательной метрологии (МОЗМ ), которая разрабатывает общие вопросы законодательной метрологии (классы точности, СИ, терминологию по законодательной метрологии, сертификацию СИ).

Созданный в 1954 г. Комитет стандартов мер и измерительных приборов при Совете Министров СССР, после преобразований, становится Комитетом РФ по стандартизации - Госстандартом России .

В связи с принятием ФЗ «О техническом регулировании» в 2002 г. и реорганизации органов исполнительной власти в 2004 г. Госстандарт стал Федеральным агентством по техническому регулированию и метрологии (в настоящее время сокращенно Росстандарт ).

Развитие естественных наук привело к появлению все новых и новых средств измерений, а они в свою очередь стимулировали развитие наук, становясь все более мощным средством исследования .

Современная метрология - это не только наука об измерениях, но и соответствующая деятельность, предусматривающая изучение физических величин (ФВ), их воспроизведение и передачу, применение эталонов, основных принципов создания средств и методов измерения, оценку их погрешностей, метрологический контроль и надзор.

Метрологии базируется на двух основных постулатах (а и б ):

а ) истинное значение определяемой величины существует и оно постоянно ;

б ) истинное значение измеряемой величины отыскать невозможно .

Отсюда следует, что результат измерения связанс измеряемой величиной математической зависимостью (вероятностной зависимостью).

Истинным значением ФВ называют значение ФВ, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину (ФВ).

Действительное значение ФВ - значение ФВ, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленой измерительной задаче может быть использовано вместо него.

Для действительного значения величины всегда можно указать границы более или менее узкой зоны, в пределах которой с заданной вероятностью находится истинное значение ФВ.

Количественные и качественные проявления материального мира

Любой объект окружающего нас мира характеризуется своими специфическими свойствами.

По своей сути свойство - категория качественная . Одно и то же свойство может быть обнаружено у многих объектов или быть присущим только некоторым из них . Например, массой, температурой или плотностью обладают все материальные тела, а кристаллической структурой только некоторые из них.

Поэтому каждое из свойств физических объектов, прежде всего, должно быть обнаружено , затем описано и классифицировано, и только после этого можно приступить к его количественному изучению.

Величина - количественная характеристика размеров явлений, признаков, показателей их соотношения, степени изменения, взаимосвязи.

Величина не существует сама по себе, а имеет место лишь постольку, поскольку существует объект со свойствами, выраженными этой величиной.

Различные величины можно разделить на идеальные и реальные величины.

Идеальная величина - является обобщением (моделью) субъективных конкретных реальных понятий и в основном относятся к области математики. Их вычисляют различными способами.

Реальные величины отражаютреальные количественные свойства процессов и физических тел. Они в свою очередь делятся на физические и нефизические величины.

Физическая величина (ФВ) может быть определена как величина, свойственная некоторым материальным объектам (процессам, явлениям, материалам), изучаемым в естественных (физика, химия) и различных технических науках.

К нефизическим относят величины, присущие общественным наукам - философия, культура, экономика и др.

Для нефизических величин единица измерения не может быть введена в принципе. Их можно оценить с использованием экспертных оценок, бальной системы, набора тестов и др. Нефизические величины, при оценке которых неизбежно влияние субъективного фактора, так же, как и идеальные величины, не относятся к области метрологии.

Физические величины

Физическая величина - одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Энергетические (активные) ФВ - величины, которые не требуют для измерения приложения энергии извне. Например, давление, электрическое напряжение, сила.

Вещественные (пассивные) ФВ - величины, которым необходимо приложение энергии извне. Например, масса, электрическое сопротивление.

Индивидуальность в количественном отношении понимают в том смысле, что свойство может быть для одного объекта в определенное число раз больше , чем для другого.

Качественная сторона понятия «физическая величина» определяет «род » величины, например, масса как общее свойство физических тел.

Количественная сторона - их «размер » (значение массы конкретного физического тела).

Род ФВ - качественнаяопределенность величины. Так, постоянная и переменная скорости - однородные величины, а скорость и длина - неоднородные величины.

Размер ФВ - количественная определенность, присущая конкретному материальному объекту, системе, явлению или процессу.

Значение ФВ - выражениеразмера ФВ в виде некоторого числа принятых для нее единиц измерения.

Влияющая физическая величина - ФВ, оказывающая влияние на размер измеряемой величины и (или) результат измерений.

Размерность ФВ - выражение в форме степенного одночлена, составленного из произведений символов основных ФВ в различных степенях и отражающая связь данной величины с ФВ, принятые в этой системе величин за основные с коэффициентом пропорциональности, равным 1.

dim x = L l M m T t .

Постоянная физическая величина - ФВ, размер которой по условиям измерительной задачи можно считать не изменяющимся за время, превышающее время измерения.

Размерная ФВ - ФВ, в размерности которой, хотя бы одна из основных ФВ возведена в степень, не равную 0. Например, сила F в системе LMTIθNJ есть размерная величина: dim F = LMT -2 .

При измерении выполняют сравнение неизвестного размера с известным размером, принятым за единицу.

Уравнение связи между величинами - уравнение, отражающее связь между величинами, обусловленную законами природы, в которых под буквенными символами понимают ФВ. Например, уравнение v = l / t отражает существующую зависимость постоянной скорости v от длины пути l и времени t .

Уравнение связи между величинами в конкретной измерительной задаче называют уравнением измерений.

Аддитивная ФВ - величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга.

Считается, что аддитивная (или экстенсивная) физическая величина измеряются по частям , кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. Например, к аддитивным физическим величинам относят длину, время, силу тока и др.

При измерении различных ФВ, характеризующих свойства веществ, объектов, явлений и процессов, некоторые свойства проявляются только качественно , другие - количественно .

Размеры ФВ как измеряются , так и оцениваются при помощи шкал, т.е. количественные или качественные проявления любого свойства отражаются множествами, которые образуют шкалы ФВ.

Практическая реализация шкал измерений осуществляется путем стандартизации единиц измерений, самих шкал и условий их однозначного применения.

Единицы физических величин

Единица измерения ФВ - ФВ фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных физических величин.

Числовое значение ФВ q - отвлеченное число, входящее в значение величины или отвлеченное число, выражающее отношение значения величины к принятой для нее единице данной ФВ. Например, 10 кг - значение массы, причем число 10 - это и есть числовое значение.

Система ФВ - совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин.

Система единиц ФВ - совокупность основных и производных ФВ, образованная в соответствии с принципами для заданной системы ФВ.

Основная ФВ - ФВ, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

Производная ФВ - ФВ, входящая в систему величин и определяемая через основные величины этой системы.

Международная система единиц (система СИ) в России была введена 1 января 1982г. По ГОСТ8. 417 - 81, в настоящее время действует ГОСТ8. 417 - 2002 (таблицы 1 -3).

Главный принцип создания системы - принцип когерентности , когда производные единицы могут быть получены с помощью определяющих уравнений с численными коэффициентами, равными 1.

Таблица1 - Основные величины и единицы СИ

Основные ФВ системы СИ:

- метр (metre) есть длина пути, проходимого светом в вакууме за интервал времени 1/299792458 с;

- килограмм (kilogram) равен массе международного прототипа килограмма (МБМВ, г. Севр, Франция);

- секунда (second) есть время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

- ампер (ampere) есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенных в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2·10 -7 Н (ньютон);

- кельвин (kelvin) есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды.

Температура тройной точки воды - это температура точки равновесия воды в твердой (лед), жидкой и газообразной (пар) фазах на 0,01 К или 0,01°С выше точки таяния льда;

- моль (mole) есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде - 12 массой 0,012 кг;

- кандела (candela) есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср (ср - стерадиан).

Радиан - угол между двумя радиусами окружности, длинадуги между которыми равна этому радиусу.

Стерадиан - телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, радиусу сферы.

Системная единица ФВ - единица ФВ, входящая в принятую систему единиц. Основные, производные, кратные и дольные единицы СИ являются системными, например, 1 м; 1 м/с; 1 км.

Внесистемная единица ФВ - единица ФВ, не входящая в принятую систему единиц, например, полный угол (оборот на 360°), час (3600 с), дюйм (25,4 мм) и другие.

Для выражения звукового давления, усиления, ослабления и др. применяют логарифмические ФВ

Единица логарифмической ФВ - бел (Б):

Энергетические величины 1Б = lg (Р 2 /Р 1) при Р 2 = 10Р 1 ;

Силовые величин 1Б = 2 lg(F 2 /F 1) при F 2 = .

Дольная единица от бела - децибел (д Б): 1д Б = 0,1Б.

Широкое применение получили относительные ФВ - безразмерные отношения

двух одноименных ФВ. Они выражаются в процентах и безразмерных единицах.

Одним из важнейших показателей современной цифровой измерительной техники является количество (объем) информации бит и байт (Б). 1 байт = 2 3 = 8 бит.

Таблица 2 - Единицы количества информации

Используют приставки СИ: 1Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т.д. При этом обозначение Кбайт начинают с прописной (заглавной) буквы в отличие от строчной буквы «к» для обозначения множителя 10 3 .

Исторически сложилось такая ситуация, что с наименованием «байт» некорректно (вместо 1000 = 10 3 принято 1024 = 2 10) используют приставки СИ: 1Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т.д. При этом обозначение Кбайт начинают с прописной (заглавной) буквы в отличие от строчной буквы «к» для обозначения множителя 10 3 .

Некоторым единицам СИ в честь ученых присвоены специальные наименования, обозначения которых записывают с прописной (заглавной) буквы, например, ампер - А, паскаль - Па, ньютон - Н. Такое написание обозначений этих единиц сохраняют в обозначении других производных единиц СИ.

Кратные и дольные единицы ФВ применяют с множителями и приставками

Кратные и дольные единицы СИ не являются когерентными.

Кратные единица ФВ - единица ФВ, в целое число раз бóльшая системной или внесистемной единицы. Например, единица мощности мегаватт (1 МВт = 10 6 Вт).

Дольная единица ФВ - единица ФВ, в целое число раз меньшая системной или внесистемной единицы. Например, единица времени 1 мкс = 10 -6 с является дольной от секунды.

Наименования и обозначения десятичных кратных и дольных единиц системы СИ образуются с помощью определенных множителей и приставок (таблица 4).

Кратные и дольные единицы от системных единиц не входят в когерентную систему единиц ФВ.

Когерентная производная единица ФВ - производная единица ФВ, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принятровным 1 .

Когерентная система единиц ФВ - система единиц ФВ, состоящая из основных единиц и когерентных производных единиц.

Приставки «гекто», «деци», «дека», «санти» должны использоваться, когда применение других приставок неудобно.

Присоединение к наименованию единицы двух и более приставок подряд недопустимо. Например, вместо микромикрофарад следует писать пикофарад.

В связи с тем, что наименование основной единицы «килограмм» содержит приставку «кило», для образования кратных и дольных единиц массы используется дольная единица «грамм», например, миллиграмм (мг) вместо микрокилограмм (мккг).

Дольную единицу массы «грамм» применяют без присоединения приставки.

Кратные и дольные единицы ФВ пишут слитно с наименованием единицы СИ, например, килоньютон (кН), наносекунда (нс).

Некоторым единицам СИ в честь ученых присвоены специальные наименования, обозначения которых записывают с прописной (заглавной) буквы, например, ампер - А, ом - Ом, ньютон - Н.

Таблица 3 - Производные единицы СИ, имеющие специальные наименования и обозначения

Величина Единица
Наименование Размер-ность Наимено-вание Обозначение
международное русское
Плоский угол Радиан rad рад
Телесный угол Стерадиан sr ср
Частота Т -1 Герц Hz Гц
Сила LMT -2 Ньютон N Н
Давление L -1 MT -2 Паскаль Pa Па
Энергия, работа, количество теплоты L 2 MT -2 Джоуль J Дж
Мощность L 2 MT -3 Ватт W Вт
Электрический заряд, количество электричества TI Кулон C Кл
Электрическое напряжение, потенциал, ЭДС L 2 MT -3 I -1 Вольт V В
Электрическая емкость L -2 M -1 T 4 I 2 Фарад F Ф
Электрическое сопротивление L 2 M 1 T -3 I -2 Ом Ohm Ом
Электрическая проводимость L -2 M -1 T 3 I 2 Сименс S См
Поток магнитной индукции, магнитный поток L 2 M 1 T -2 I -1 Вебер Wb Вб
Плотность магнитного потока, магнитная индукция MT -2 I -1 Тесла T Тл
Индуктивность, взаимная индукция L 2 M 1 T -2 I -2 Генри H Гн
Температура Цельсия t Градус Цельсия °C °C
Световой поток J Люмен lm лм
Освещенность L -2 J Люкс lx лк
Активность радионуклида T -1 Беккерель Bq Бк
Поглощенная доза ионизирующего излучения, керма L 2 T -2 Грей Gy Гр
Эквивалентная доза ионизирующего излучения L 2 T -2 Зиверт Sv Зв
Активность катализатора NT -1 Катал kat кат

Такое написание обозначений этих единиц сохраняют в обозначении других производных единиц СИ и в других случаях.

Правила написания значений величин в единицах СИ

Значение величины записывают как произведение числа и единицы измерения, в которой число, умноженное на единицу измерения, есть численное значение величины этой единицы.

Таблица 4 - Множители и приставки десятичных кратных и дольных единиц СИ

Десятичный множитель Наименование приставки Обозначение приставки
международное русское
10 18 экса Е Э
10 15 пета Р П
10 12 тера Т Т
10 9 гига G Г
10 6 мега M М
10 3 кило k к
10 2 гекто h г
10 1 дека da да
10 -1 деци d д
10 -2 санти c с
10 -3 милли m м
10 -6 микро µ мк
10 -9 нано n н
10 -12 пико p п
10 -15 фемто f ф
10 -18 атто a а

Между числом и единицей измерения всегда оставляют один пробел , например сила тока I = 2 A.

Для безразмерных величин, у которых единицей измерения является «единица», единицу измерения принято опускать.

Численное значение ФВ зависит от выбора единицы. Одно и то же значение ФВ может иметь различные значения в зависимости от выбранных единиц, например, скорость автомобиля v = 50 м/с = 180 км/ч; длина волны одной из желтых натриевых полос λ = 5,896·10 -7 м = 589,6 нм.

Математические символы ФВ печатают курсивом (наклонным шрифтом), обычно это отдельные строчные или прописные буквы латинского или греческого алфавита, а с помощью нижнего индекса можно дополнить информацию о величине.

Обозначения единиц в тексте, набранным любым шрифтом, следует печатать прямым (ненаклонным) шрифтом . Они являются математическими единицами, а не аббревиатурой.

После них никогда не ставится точка (кроме случаев, когда они заканчивают предложение), они не имеют окончаний множественного числа.

Для отделения десятичной части от целой ставят точку (в документах на английском языке - относится в основном к США и Англии) или запятую (во многих европейских и языках других стран, в т.ч. Российской Федерации ).

Для облегчения прочтения чисел с большим количеством цифр эти цифры могут быть объединены в группы по три как до, так и после запятой, например, 10 000 000.

При написании обозначений производных единиц обозначения единиц, входящих в производные, разделяют точками, стоящими на средней линии , например, Н·м (ньютон - метр), Н·с/м 2 (ньютон - секунда на квадратный метр).

Наиболее употребительно выражение в виде произведения обозначений единиц, возведенных в соответствующую степень, например, м 2 ·с -1 .

При наименовании, соответствующем произведению единиц с кратными или дольными приставками, рекомендуется приставку присоединять к наименованию первой единицы , входящей в произведение. Например, 10 3 Н·м следует именовать кН·м, а не Н·км.

Понятие о контроле и испытаниях

Некоторые понятия, связанные с определением«измерение»

Принцип измерений - физическое явление или эффект, положенные в основу измерения (механический, оптико-механический, эффект Доплера для измерения скорости движения объекта).

Методика выполнения измерений (МВИ) - установленная совокупность операций и правил при измерении, выполнение которых обеспечивает получение результатов с гарантированной точностью в соответствии с принятым методом.

Обычно МВИ регламентируется НТД, например, аттестацией МВИ. По существу МВИ - алгоритм измерения.

Наблюдения при измерении - операция, проводимая при измерении и имеющая целью своевременно и правильно произвести отсчет итога наблюдения - результат всегда случаен и представляет собой одно из значений измеряемой величины, подлежащей совместной обработке для получения результата измерения.

Отсчет показаний - фиксация значения величины или числа по показывающему устройству СИ в заданный момент времени.

Например, зафиксированное в некоторый момент времени по шкалеизмерительной индикаторной головки значение, равное 4,52 мм,является отсчетом ее показания на этот момент.

Информативный параметр входного сигнала СИ - параметр входного сигнала, функционально связанный с измеряемой ФВ ииспользуемый для передачи ее значения или являющийся самойизмеряемой величиной.

Измерительная информация - информация о значениях ФВ. Зачастуюинформация об объекте измерения известна до проведения измерений, что является важнейшим фактором, обуславливающим эффективность измерения. Такую информацию обобъекте измерения называют априорной информацией .

Измерительная задача - задача, состоящая в определении значения ФВ путем ее измерения с требуемой точностьюв данных условиях измерения.

Объект измерения - тело (физическая система, процесс,явление), которые характеризуются одной или несколькими ФВ.

Например, деталь, длина и диаметр которой измеряются; технологический процесс, во время которого измеряют температуру.

Математическая модель объекта - совокупность математических символов и отношений между ними, которая адекватно описывает свойства объекта измерения.

При построении теоретических моделей неизбежно введение каких либо ограничений, допущений и гипотез.

Поэтому возникает задача оценки достоверности (адекватности) полученной модели реальному процессу или объекту. Для этого, когда это необходимо, проводят экспериментальную проверку разработанных теоретических моделей.

Алгоритм измерения - точное предписание о порядке операций, обеспечивающих измерение ФВ.

Область измерений - совокупность измерений ФВ, свойственных какой - либо области науки или техники и выделяющихся своей спецификой (механические, электрические, акустические и т. д.).

Неисправленный результат измерения - значение величины, полученное при измерении до введения в него поправок, учитываю систематические погрешности.

Исправленный результат измерения - полученное при измерении значение величины и уточненное путем введения в него необходимых поправок на действие систематических погрешностей.

Сходимость результатов измерений - близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же СИ, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Наряду с термином «сходимость» в отечественных документах используют термин «повторяемость». Сходимость результатов измерений может быть выражена количественно через характеристики их рассеяния.

Воспроизводимость результатов измерений - близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но проведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Воспроизводимость результатов измерений может быть выражена количественно через характеристики их рассеяния.

Качество измерений - совокупность свойств, обуславливающих получение результатов измерений с требуемыми точностными характеристиками, в необходимом виде и в установленные сроки.

Достоверность измерений определяется степенью доверия к результату измерения и характеризуется вероятностью того, что истинное значение измеряемой величины находится в указанных пределах, или в указанном интервале значений величины.

Ряд результатов измерений - значения одной величины, последовательно полученные из следующих друг за другом измерений.

Среднее взвешенное значение величины - среднее значение величины из ряда неравноточных измерений, определенное с учетом веса каждого единичного измерения.

Среднее взвешенное значение еще называют средним весовым.

Вес результата измерений (вес измерений) - положительное число (р), служащее оценкой доверия к тому или иному отдельному результату измерения, входящему в ряд неравноточных измерений.

Для простоты вычислений обычно результату с большей погрешностью приписывают вес (р = 1), а остальные веса находят по отношению к данному «единичному» весу.

Измерение - нахождение значения ФВ опытным путем с помощью специальных технических средств.

Измерение включает в себя совокупность операций по применению технического средства, хранящего единицу ФВ, обеспечивающих нахождения соотношения измеряемой величины с ее единицей и получения значения этой величины.

Примеры: в простейшем случае, прикладывая линейку к какой - либо детали, по сути сравниваем ее размер с единицей, хранимой линейкой, и, произведя отсчет, получаем значение величины (длины, высоты); с помощью цифрового прибора сравнивают раз мер

ФВ, преобразованный в цифровое значение, с единицей, хранимой прибором, и проводят отсчет по цифровому табло прибора.

Понятие «измерение» отражает следующие его особенности (а - д ):

а ) приведенное определение понятия «измерение» удовлетворяет общему уравнению измерений, т.е. в нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть (сравнение измеряемой величины и ее единицей) и показан результат операций (получение значения величины);

б ) измерять можно характеристики свойств реально существующих объектов материального мира;

в ) процесс измерений - экспериментальный процесс (невозможно провести измерение теоретическим или расчетным путем);

г ) для проведения измерения обязательным является использование технического СИ, хранящего единицу измерения;

д ) в качестве результата измерения принимается значение ФВ (выражение ФВ в виде некоторого числа принятых для нее единиц).

От термина «измерение» происходит термин «измерять» , которым широко пользуются на практике.

Не следует применять выражение «измерение значения», так как значение величины - это уже результат измерений.

Метрологическая суть измерения сводится к основному уравнению измерения (основному уравнению метрологии):

где А - значение измеряемой ФВ;

А о - значение величины, принятой за образец;

k - отношение измеряемой величины к образцу.

Итак, любое измерение заключается в сравнении путем физического эксперимента измеряемой ФВ с некоторым ее значением, принятым за единицу сравнения, т.е. мерой .

Наиболее удобен вид основного уравнения метрологии, если выбранная за образец величина равна единице. В этом случае параметр k представляет собой числовое значение измеренной величины, зависящее от принятого метода измерения и единицы измерения.

Измерения включают в себя наблюдения.

Наблюдение при наблюдении - экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно значение из совокупности значений величины, подлежащих совместной обработке для получения результата измерений.

Следует различать термины «измерение », «контроль », «испытание » и «диагностирование »

Измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств.

Измерение может быть как частью промежуточного преобразования в процессе контроля, так и окончательным этапом получения информации при испытании.

Технический контроль — это процесс определения соответствия установленным нормам или требованиям значения параметров изделия или процесса.

При контроле выявляется соответствие или несоответствие фактических данных требуемым и вырабатывается соответст-вующее логическое решение по поводу объекта контроля — «го-ден » или «негоден ».

Контроль состоит из ряда элементарных действий:

Измери-тельного преобразования контролируемой величины;

Операции воспроизведения установок контроля;

Операции сравнения;

Опре-деления результата контроля.

Перечисленные операции во многом схожи с операциями измерения, однако процедуры измерения и контроля во многом различаются :

- результатом контроля является качественная характери-стика, а измерения - количественная;

- контроль осуществляется, как правило, в пределах относи-тельно небольшого числа возможных состояний, а измерение — в широком диапазоне значений измеряемой величины;

Основной характеристикой качества процедурыконтроля является достоверность , а процедуры измерения — точность.

Испытанием называется экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействий на него при его функционировании, а также примоделировании объекта или (и) воздействия.

Экспериментальное определение при испытаниях указанных характеристик производится с помо-щью измерений, контроля, оценивания и формирования соответствующих воздействий.

Основными признаками испытаний являются:

- задание требуемых (реальных или моделируемых) условий испытаний (режимов функционирования объекта испытаний и (или) совокупности воздействующих факторов);

- принятие на основе результатов испытаний решений годности или негодности его, предъявления на другие испытания и т.д.

Показателями качества испытаний является неопределенность (погрешность), повторяемость и воспроизводимость результатов.

Диагностирование - процесс распознавания состояния элементов технического объекта в данный момент времени. По результатам диагностирования можно прогнозировать состояние элементов технического объекта для продолжения его эксплуатации.

Для проведения измерений с целью контроля, диагностирования или испытания необходимо проектирование измерений , в процессе которого выполняют следующие работы:

- анализ измерительной задачи с выяснением возможных источников погрешностей;

- выбор показателей точности измерений;

- выбор числа измерений , метода и средств измерений (СИ);

- формулирование исходных данных для расчета погрешностей;

- расчет отдельных составляющих и общей погрешности ;

- расчет показателей точности и сопоставление их с выбранными показателями.

Все эти вопросы отражают в методике выполнения измерений (МВИ ).

Классификация измерений

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Измерения весьма разнообразны, что объясняется множеством измеряемых величин, различным характером их изменения во времени, различными требованиями к точности измерений и т.д.

В связи с этим измерения классифицируются по различным признакам (рисунок 1).

Равноточные измерения - ряд измерений какой-либо величины,выполненных несколькими одинаковыми по точности СИ в одних и техже условиях с одинаковой тщательностью.

Неравноточные измерения - ряд измерений какой-либо величины, выполненных различающими по точности СИ и (или) в разных условиях.

Однократное измерение - измерение, выполненное один раз. На практике во многих случаях выполняются однократные измерения, например, времени по часам, для производственных процессов.

Многократные измерения - измерение одного и того же размера ФВ, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящих из ряда однократных измерений.

Статические измерения - измерения ФВ, принимаемой в соответствии с конкретной измерительной задачей за неизменную напротяжении времени измерения.

Рисунок 1 - Классификация видов измерения

Динамическое измерение - измерение изменяющейся по размеру ФВ. Результатом динамического измерения является функциональная зависимость измеряемой величины от времени, т. е. когда выходной сигнал изменяется во времени в соответствии с изменением измеряемой величины.

Абсолютные измерения - измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Например, измерение длины пути при равномерном прямолинейном равномерном движении L = vt, основано на измерении основной величины - времени Т и использовании физической постоянной v.

Понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах. В такой трактовке это понятие находит все большее применение.

Относительное измерение - измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Относительные измерения при прочих равных условиях могут быть выполнены более точно, так как в суммарную погрешность результата измерений не входит погрешность меры ФВ.

Примеры относительных измерений: измерение отношений мощностей, давлений и т.д.

Метрологические измерения - измерения, выполненные с использованием эталонов.

Технические измерения - измерения, выполненные техническими СИ.

Прямое измерение - измерение ФВ, проводимое прямым методом, при котором искомое значение ФВ получают непосредственноиз опытных данных.

Прямое измерение производится путем сравнения ФВ с мерой этой величины непосредственно или путем отсчета показаний СИ по шкале или цифровому прибору, градуированных в требуемых единицах.

Часто под прямыми измерениями понимаются измерения, при которых не производятся промежуточных преобразований.

Примеры прямых измерений: измерение длины, высоты с помощью линейки, напряжения - с помощью вольтметра, массы с помощью пружинных весов.

Уравнение прямого измерения имеет следующий вид:

Косвенное измерение - измерение, полученное на основе результатов прямых измерений других ФВ, функционально связанных с искомой величиной известной зависимостью.

Уравнение косвенных измерений имеет следующий вид:

Y = F(x 1 , x 2 …, x i,… x n),

где F - известная функция;

n - число прямого измерения ФВ;

x 1 , x, x i , x n - значения прямого измерения ФВ.

Например, определение площади, объема с помощью измерения длины, ширины, высоты; электрической мощности методом измерения силы тока и напряжения и т. д.

Совокупные измерения - одновременно проводимые измерениянескольких одноименных величин, при которых искомое значение величины, определяют путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Понятно, что для определения значений искомых величин число уравнений должно быть не меньше числа величин.

Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.

Имеются гири массами m 1 , m 2, m 3 .

Масса первой гири определится следующим образом:

Масса второй гири определится как разность массы первой и второй гирь М 1,2 и измеренной массой первой гири m 1:

Масса третьей гири определится как разность массы первой, второй и третьей гирь М 1,2,3 и измеренных масс первой и второй гирь

Часто именно этим путем добиваются повышения точности результатов измерения.

Совместные измерения - одновременно проводимые измерения нескольких неодноименных ФВ для определения зависимости между ними.

Пример 1. Построение градуировочной характеристики Y = f(x) измерительного преобразователя, когда одновременно измеряют наборы значений:

Значение ФВ определяется с помощью СИ конкретным методом.

Методы измерений

Метод измерений - прием или совокупность приемов сравнения измеряемой ФВ с ее единицей в соответствии с реализованным принципом измерений и использования СИ.

Конкретные методы измерений определяются видом измеряемых величин, их размерами, требуемой точностью результата, быстротой процесса измерения, условиями, при которых проводят измерения, и ряд других признаков.

В принципе каждую ФВ можно измерить несколькими методами, которые могут отличаться друг от друга особенностями как технического, так и методического характера.

Метод непосредственной оценки - метод измерений, при котором значение величины определяют непосредственно по отсчетному устройству СИ.

Быстрота процесса измерения делает его часто незаменимым для практического

использования, хотя точность измерения обычно ограничена. Примеры: измерение длины линейкой, массы - пружинными весами, давления - манометром.

Метод сравнения с мерой - метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение зазора с помощью щупа, измерение массы на рычажных весах с помощью гирь, измерение длины с помощью концевых мер и т. д.).

В отличие от СИ непосредственной оценки, более удобной для получения оперативной информации, СИ сравнения обеспечивают бóльшую точность измерения.

Нулевой метод измерения - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

Например, измерение электрического сопротивления мостом с полным его уравновешиванием.

Дифференциальный метод - метод измерения, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающее от значения измеряемой величины, и при которой измеряется разность между этими величинами.

Например, измерение длины сравнением с образцовой мерой на компараторе - средстве сравнения, предназначенном для сличения мер однородных величин.

Дифференциальный метод измерений наиболее эффективен тогда, когда практическое значение имеет отклонение измеряемой величины от некоторого номинального значения (отклонение действительного линейного размера от номинального, уход частоты и т. д.).

Метод измерений замещением - метод сравнения с мерой, в которой измеряемую величину замещают мерой с известным значением величины, например, взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов).

Метод измерений дополнением - метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

Метод противопоставления - метод сравнения с мерой, в котором измеряемая величина, воспроизводимая мерой, одновременно действует на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

Например, измерение массы на равноплечих весах с помещением измеряемой массы и уравновешивающих ее гирь на двух чашках весов, сличение мер с помощью компаратора, где основой метода является выработка сигнала о наличии разности размеров сравниваемых величин.

Метод совпадений - метод сравнения с мерой, в которой разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов.

Например, измерение длины с помощью штангенциркуля с нониусом, когда наблюдают совпадение отметок на шкалах штангенциркуля и нониуса, измерение частоты вращения с помощью стробоскопа, когда положение какой либо отметки на вращающемся объекте совмещают с отметкой на невращающейся части этого объекта при определенной частоте вспышек стробоскопа.

Контактный метод измерений - метод измерений, при котором чувствительный элемент прибора (измерительные поверхности прибора или инструмента) приводятся в контакт с объектом измерения.

Например, измерение температуры рабочего тела термопарой, измерение диаметра детали штангенциркулем.

Бесконтактный метод измерений - метод измерений, основанный на том, что чувствительный элемент СИ не приводится в контакт с объектом измерения.

Например, измерения расстояния до объекта с помощью радиолокатора, измерение линейных размеров деталей с фотоэлектрическим измерительным прибором.

Средства измерений

Средство измерения (СИ) - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу ФВ, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Средства измерений многообразны. Однако для этого множества можно выделить некоторые общие признаки , присущие всем средствам измерений независимо от области применения.

По роли, выполняемой в системе обеспечения единства измерений , средства измерений делят на метрологические и рабочие .

Метрологические СИ предназначены для метрологических целей - воспроизведения единицы и (или) ее хранения или передачи размера единицы рабочим СИ.

Рабочие СИ - СИ, предназначенные для измерений, не связанных с передачей размера единицы другим СИ.

По отношению к измеряемой ФВ СИ подразделяются на основные и вспомогательные .

Основные СИ - СИ той ФВ, значение которой необходимо получить в соответствии с измерительной задачей.

Вспомогательные СИ - СИ той ФВ, влияние которой на основное СИ или объект измерений необходимо учитывать для получения результатов измерений требуемой точности.

Эти СИ применяют для контроля над поддержанием значений влияющих величин в заданных пределах.

По уровню автоматизации все СИ делят на неавтоматические (имеется в виду обычный прибор, например, рычажный микрометр), автоматические и автоматизированные .

Автоматические СИ - СИ, производящие без участия человека измерения величины и все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработки управляющих сигналов.

Примеры: измерительные или контрольные автоматы, встроенные в автоматическую технологическую линию (технологическое оборудование, станок и др.), измерительные роботы, обладающие хорошими манипуляционными свойствами.

Автоматизированное СИ - СИ, производящее в автоматическом режиме одну или часть измерительных операций. Например, счетчик газа (измерение и регистрация данных с нарастающим итогом).

Мера ФВ - СИ, предназначенное для воспроизведения и (или) хранения и передачи ФВ одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с заданной точностью.

Измерительный прибор - СИ, предназначенное для получениязначений измеряемой величины в установленном диапазоне и вырабатывающий сигнал измерительной информации в форме, доступной наблюдателю для непосредственного восприятия (последнее относится к показывающим приборам).

Аналоговый измерительный прибор - СИ, показания которого являются непрерывной функцией изменения измеряемой величины. Например,весы, манометр, амперметр, измерительная головка со шкальными отсчетными устройствами.

Цифровым измерительным прибором (ЦИП) называется СИ, автоматически вырабатывающее дискретные сигналы измерительной информации, показания которого представлены в цифровой форме. При измерениях с помощью ЦИП исключаются субъективные ошибки оператора.

Измерительная установка - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких ФВ и расположенная в одном месте.

Например, поверочная установка, испытательный стенд, измерительная машина для измерения удельного сопротивления материалов.

Измерительная система (ИС) - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, компьютеров и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких ФВ, свойственных этому объекту, и выработки измерительных сигналов в разных целях. Измерительная система может содержать десятки измерительных каналов.

В зависимости от назначения ИС разделяют на измерительные информационные , измерительные контролирующие, измерительные управляющие и пр.

Различают также достаточно условно информационно-измерительные системы (ИИС) и компьютерно - измерительные системы (КИС).

Измерительную систему, перестраиваемую в зависимости от изменения измерительной задачи, называют гибкой измерительной системой (ГИС).

Измерительный - вычислительный комплекс (ИВК ) - функционально объединенная совокупность СИ, компьютеров и вспомогательных устройств, предназначенных для выполнения в составе ИС конкретной измерительной функции.

Компьютерно - измерительная система (КИС), иначе виртуальный прибор, состоит из стандартного или специализированного компьютера со встроенной платой (модулем) сбора данных.

Измерительный преобразователь (ИП) - техническое средствос нормативными

метрологическими характеристиками, служащее дляпреобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи. ИП входит в состав какого-либо измерительного прибора (измерительной установки, ИС и др.), или применяется вместе с каким - либо СИ.

Примеры ИП. Цифро-аналоговый преобразователь (ЦАП) или аналого-цифровой преобразователь (АЦП).

Передающий преобразователь - измерительный преобразователь, служащий для

дистанционной передачи сигнала измерительной информации к другим устройствам или

системам (термопара в термоэлектрическом термометре).

Первичный измерительный преобразователь или просто первичный преобразователь (ПП) - измерительный преобразователь, на который непосредственно воздействует измеряемая ФВ;

Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Единство измерений - состояние измерений, характеризующихся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Физическая величина - одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Истинное значение физической величины - значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину.

Истинный размер физической величины- объективная реальность, которая не зависит от того, измеряют ее или нет и которая идеальным образом характеризует свойства объекта.

Так как истинное значение мы не знаем, то вместо него используют понятие действительного значения.

Действительное значение физической величины - значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Шкала физической величины - упорядоченная совокупность значений физической величины, служащая исходной основой для измерений данной величины.

Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с её единицей и получение значения этой величины.

Измерение- это процесс сравнения искомой величины с величиной, размер которой равен 1.

Q=n*[Q]- уравнение измерений,

Q- Измеряемая физическая величина,

[Q]- качественная характеристика ФВ,

n- Количественная характеристика, которая показывает, во сколько раз измеряемая величина отличается от той величины, размер которой принят за единицу.

[Q]- ее размер принимаем за единицу. Напр., размер детали 20 мм, мы сравниваем р-р с 1 мм.

Измерительная задача - задача, заключающаяся в определении значения физической величины путём её измерения с требуемой точностью в данных условиях измерений.

По способу получения информации измерения делятся:

1. Прямые измерения - измерения, при которых искомое значение физической величины находят непосредственно из опытных данных, и их можно выразить Q= x, где Q- искомое значение измеряемой величины, а x- значение, получаемое из опытных данных. Например, измерение длины тела с использованием ШЦ, линейки и т.д. измерение осуществляется с помощью СИ, шкалы которых проградуированы в единицах измеряемой величины.

Прямые измерения лежат в основе всех последующих измерений.

2. Косвенные измерения (косвенный метод измерений) - определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Например, объем детали Q=V=S*h.

3. Совокупные измерения - проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путём решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях (число уравнений должно быть не менее числа величин). Например, определение массы тела при помощи разновесов; определение сопротивления, индуктивности при последовательных и параллельных соединениях.

4. Совместные измерения - проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними. Неодноименные величины различаются по своей природе. Например, необходимо определить зависимость сопротивления от температуры, давления

Характеристики измерений:

Принцип измерений - физическое явление или эффект, положенное в основу измерений.

Метод измерений - приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений.

Основные методы измерений:

· Метод непосредственной оценки - метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений.

· Метод сравнения с мерой - метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Методы сравнения с мерой:

o а) Нулевой метод измерений - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

o б) Метод измерения замещением - метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.

o в) Метод измерений дополнением - метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчётом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

o г) Дифференциальный метод измерений - метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими величинами.

Погрешность измерения

Точность измерений - одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.

Сходимость результатов измерений - близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Воспроизводимость результатов измерений - близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведённых к одним и тем же условиям измерений (температуре, влажности и т.д.) (воспроизводимость может характеризоваться средними квадратическими погрешностями сравниваемых рядов измерений).

Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Вид средств измерений - совокупность средств измерений, предназначенных для измерений величин определённого вида (средства измерения массы, линейный величин...).

Классификация средств измерений:

1. Мера - средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью (однозначная, многозначная меры, набор мер, магазин мер).

o Однозначная мера - мера, воспроизводящая физическую величину одного размера.

o Набор мер - комплект мер разного размера одной и той же физической величины, предназначенных для применения на практике, как в отдельности, так и в различных сочетаниях (набор КМД).

o Магазин мер - набор мер, конструктивно объединённых в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений).

Номинальное значение меры - значение величины, приписанное мере или партии мер при изготовлении. Действительное значение меры - значение величины, приписанное мере на основании её калибровки или поверки.

2. Измерительный прибор - средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

3. Измерительная установка - совокупность функционально объединённых мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте.

4. Измерительная система - совокупность средств измерений, образующих измерительные каналы, вычислительных и вспомогательных устройств, функционирующая как единое целое и предназначенная для автоматического (автоматизированного) получения информации о состоянии объекта путём измерительных преобразований в общем случае, множества изменяющихся во времени и распределённых в пространстве величин, характеризующих это состояние; машинной обработки результатов измерений; регистрации и индикации результатов измерений и результатов машинной обработки; преобразования этих данных в выходные сигналы системы. Измерительные системы удовлетворяют признакам средств измерений и относятся к средствам измерений.

5. Измерительный преобразователь.

6. Измерительная машина.

7. Измерительные принадлежности - вспомогательные средства, служащие для обеспечения необходимых условий для выполнения измерений с требуемой точностью (не являются средством измерения).

Метрологические характеристики средств измерений - характеристики свойств средства измерений, оказывающих влияние на результаты и погрешности измерений, предназначенные для оценки технического уровня и качества средства измерений, для определения результатов измерений и расчётной оценки характеристик инструментальной составляющей погрешности измерений.

Шкала - часть показывающего устройства средства измерений, представляющая собой упорядоченный ряд отметок вместе со связанной с ним нумерацией.

Деление шкалы - промежуток между двумя соседними отметками шкалы средства измерений.

Цена деления шкалы - разность значений величины, соответствующих двум соседним отметкам шкалы средства измерений.

Начальное значение шкалы - наименьшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений.

Конечное значение шкалы - наибольшее значение измеряемой величины, которое может быть отсчитано по шкале средства измерений.

Вариация показаний измерительного прибора - разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе к этой точке со стороны меньших и больших значений измеряемой величины.

Диапазон показаний - область значения шкалы прибора, ограниченная начальным и конечным значениями шкалы.

Диапазон измерений - область значений величины, в пределах которой нормированы допускаемые пределы погрешности средства измерений.

Динамическая характеристика средства измерений - МХ свойств средства измерений, проявляющихся в том, что на выходной сигнал этого средства измерений влияют значения входного сигнала и любые изменения этих значений во времени.

Стабильность средства измерений - качественная характеристика средства измерений, отражающая неизменность во времени его МХ.

Погрешности средств измерений и измерений:

Абсолютно точно измерить ничего нельзя. Результат измерения зависит от множества факторов:- применяемого метода измерения,

Применяемого СИ,

Условий проведения измерений,

От способа обработки результатов измерения,

Квалификации операторов ит.д.

Эти факторы по-разному сказываются на отличии результата измерения от истинного значения величины. Прежде всего: 1) существует погрешность от замены истинного значения действительным. 2) погрешность используемого метода измерения, причем каждый из методов вносит определенный вклад в погрешность. 3) Т.к. любая зависимость между измеряемой величиной и др. величинами выводится на основании некоторых допущений, то при использовании этой зависимости допускается теоретическая (методическая) погрешность. 4) Само средство измерения является источником погрешности, т.к. его несовершенство, искажение характерных признаков измеряемой величины(входного сигнала), поступающих на вход СИ в процессе выполняемых измерит. преобразований.

Погрешность средства измерений - разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Погрешность измерения - отклонение результата измерения от истинного (действительного) значения измеряемой величины (истинное значение величины неизвестно, его применяют только в теоретических исследованиях. На практике используют действительное значение величины)

Погрешность средства измерений в интервале влияющей величины - погрешность средства измерений в условиях, когда одна из влияющих величин принимает любые значения в пределах рабочей области её значений, а остальные влияющие величины находятся в пределах, соответствующих нормальным условиям (ГОСТ 8.050-73 «Нормальные условия выполнения линейных и угловых измерений»). Примечание: Погрешность средства измерений в интервале влияющей величины не является дополнительной погрешностью, поскольку последняя обусловлена только отличием значения влияющей величины от нормального значения.

Систематическая погрешность - составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

Инструментальная погрешность - составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность метода - составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.

Субъективная погрешность - составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.

Случайная погрешность - составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведённых с одинаковой тщательностью, одной и той же физической величины.

Абсолютная погрешность - погрешность измерения, выраженная в единицах измеряемой величины.

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.

Систематическая составляющая погрешности средства измерений - составляющая погрешности данного экземпляра средства измерений, при одном и том же значении измеряемой или воспроизводимой величины и неизменных условиях применения средства измерений остающаяся постоянной или изменяющаяся настолько медленно, что её изменениями за время проведения измерения можно пренебречь, или изменяющаяся по определённому закону, если условия изменяются.

Случайная составляющая погрешности средства измерений - случайная составляющая погрешности средства измерений, обусловленная только свойствами самого средства измерений; представляет собой центрированную случайную величину или центрированный случайный процесс.

Погрешность результата однократного измерения - погрешность одного измерения (не входящего в ряд измерений), оцениваемая на основании известных погрешностей средства и метода измерений в данных условиях.

Суммарная погрешность - погрешность результата измерений (состоящая из суммы случайных и неисключённых систематических погрешностей, принимаемых за случайные), вычисляемая по формуле.

Класс точности средств измерений - обобщённая характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемой основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.

Классы точности средств измерений

Пределы допускаемой основной погрешности устанавливаются в последовательности, приведённой ниже.

Пределы допускаемой абсолютной основной погрешности устанавливают по формуле:

или, (2)

где Δ - пределы допускаемой абсолютной основной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы;

x - значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале;

a, b - положительные числа, не зависящие от x.

В обоснованных случаях пределы допускаемой абсолютной погрешности устанавливают по более сложной формуле или в виде графика либо таблицы.

Пределы допускаемой приведённой основной погрешности следует устанавливать по формуле

, (3)

где γ - пределы допускаемой приведённой основной погрешности, %

Δ - пределы допускаемой абсолютной основной погрешности,устанавливаемые по формуле (1);

X N – нормирующее значение, выраженное в тех же единицах, что и Δ;

p - отвлечённое положительное число, выбираемое из ряда 1∙10 n ; 1,5∙10 n ;(1,6∙10 n);2∙10 n ;2,5∙10 n ;(3∙10 n);4∙10 n ;5∙10 n ;6∙10 n (n=1, 0, -1, -2 и т. д.) (*)

Значения, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

Нормирующее значение X N для средств измерений с равномерной, практически равномерной или степенной шкалой, а также для измерительных преобразователей, если нулевое значение входного (выходного) сигнала находится на краю или вне диапазона измерений, следует устанавливать равным большему из пределов измерений или равным большему из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений.

Для электроизмерительных приборов с равномерной, практически равномерной или степенной шкалой и нулевой отметкой внутри диапазона измерений нормирующее значение допускается устанавливать равным сумме модулей пределов измерений.

Для средств измерений физической величины, для которых принята шкала с условным нулём, нормирующее значение устанавливают равным модулю разности пределов измерений.

Для средств измерений с установленным номинальным значением значением нормирующее значение устанавливают равным этому номинальному значению.

Пределы допускаемой относительной основной погрешности устанавливают по формуле:

если Δ установлено по формуле (1) или по формуле

, (5)

где δ - пределы допускаемой относительной основной погрешности, %

q – отвлечённое положительное число,

X k – больший (по модулю) из пределов измерения,

c и d - положительные числа, выбираемые из ряда (*).

В обоснованных случаях пределы допускаемой относительной основной погрешности устанавливают по более сложной формуле или в виде графика, либо таблицы.

Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.

В эксплуатационной документации на средство измерений конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности этого средства измерений.

Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице.

Практически равномерная шкала - шкала, длина делений которой отличается друг от друга не более, чем на 30% и имеет постоянную цену делений .

Форма выражения погрешности Пределы допускаемой основной погрешности Пределы допускаемой основной погрешности, % Обозначение класса точности
в документации на средстве измерений
Приведённая по По формуле (3): если нормирующее значение выражено в единицах величины на входе(выходе) средств измерений если нормирующее значение принято равным длине шкалы или её части Класс точности 1,5 Класс точности 0,5 1,5 0,5
Относительная по По формуле (4) По формуле (5) Класс точности 0,5 Класс точности 0,02/0,01 0,02/0,01
Абсолютная по По формуле (1) или (2) Класс точности М Класс точности С М С

Нормальные условия выполнения линейных и угловых измерений

В зависимости от условий проведения измерений погрешности делятся на: основные и дополнительные.

Основная погрешность – погрешность, соответствующая нормальным условиям, которые устанавливаются нормативными документами на виды СИ.

Нормальные условия должны обеспечиваться при измерениях для практического исключения дополнительных погрешностей.

Нормальные значения основных влияющих величин:

1. Температура окружающей среды 20 о С по ГОСТ 9249-59.

2. Атмосферное давление 101325 Па (760 мм рт. ст.).

3. Относительная влажность окружающего воздуха 58% (нормальное парциальное давление водяных паров 1333 Па).

4. Ускорение свободного падения (ускорение силы тяжести) 9,8 м/с 2 .

5. Направление линии и плоскости измерения линейных размеров - горизонтальное (90 о от направления силы тяжести).

6. Положение плоскости измерения углов - горизонтальное (90 о от направления силы тяжести).

7. Относительная скорость движения внешней среды равна нулю.

8. Значения внешних сил, кроме силы тяжести, атмосферного давления, действия магнитного поля Земли и сил сцепления элементов измерительной системы (установки) равны нулю.

Результаты измерения для сопоставимости должны приводиться к нормальным значениям влияющих величин с погрешностью, не превышающей 35% допускаемой погрешности измерения.

Обработка результатов измерений с многократными независимыми наблюдениями:

Требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего объект (качественный признак - стандартность детали, количественный - контролируемый параметр детали). Иногда проводится сплошное обследование, т. е. обследуется каждый из объектов совокупности. На практике осуществить это сложно, т. к. совокупность содержит очень большое количество объектов. Поэтому в таких случаях из совокупности случайным образом отбирается ограниченное число объектов (выборка), подвергаемая изучению. На основании полученных результатов делается вывод обо всей совокупности.

Выборочная совокупность (выборка) - совокупность случайно отобранных объектов.

Генеральная совокупность - вся совокупность объектов, из которых производится выборка.

Результат измерения - значение величины, полученное путём её измерения.

Ряд результатов - значения одной и той же величины, последовательно полученные из следующих друг за другом измерений.

Рассеяние результатов в ряду измерений - несовпадение результатов измерений одной и той же величины в ряду равноточных измерений, как правило, обусловленное действием случайных погрешностей. Оценками рассеяния результатов в ряду измерений могут быть: размах, средняя арифметическая погрешность (по модулю), средняя квадратическая погрешность (по модулю), средняя квадратическая погрешность или стандартное отклонение (среднее квадратическое отклонение, экспериментальное среднее квадратическое отклонение).

Размах результатов измерений - оценка R n рассеяния результатов единичных измерений физической величины, образующих ряд (или выборку из n измерений), вычисляемая по формуле

,

где X max и X min - наибольшее и наименьшее значения физической величины в данном ряду измерений (рассеяние обычно обусловлено проявлением случайных причин при измерении и носит вероятностных характер).

Результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины, и по мере приближения к нему элементы вероятности их появления возрастают. При многократных измерениях информация об истинном значении измеряемой величины и рассеивании результатов наблюдений состоит из ряда результатов отдельных наблюдений Х 1 , Х 2 , …Х n , где n – число наблюдений. Их можно рассматривать как n независимых случайных величин. В этом случае в качестве оценки измеряемой величины можно принять среднее арифметическое полученных результатов наблюдений.

.

Среднее арифметическое представляет собой лишь оценку математического ожидания (МО) результата измерения и может стать оценкой истинного значения измеряемой величины только после исключения систематических погрешностей.

Особое значение наряду с МО результатов измерений дает дисперсия – характеристика рассеивания результатов относительно МО. Дисперсия не всегда удобна в использовании, поэтому используют среднее квадратическое отклонение результатов наблюдений.

Средняя квадратическая погрешность результатов единичных измерений в ряду измерений (средняя квадратическая погрешность, СКП) - оценка S рассеяния единичных результатов измерений в ряду равноточных измерений одной и той же физической величины около среднего их значения, вычисляемого по формуле

,

где X i – результат i-го единичного измерения,

Среднее арифметическое значение измеряемой величины из n единичных результатов.

При обработке ряда результатов измерений, свободных от систематических погрешностей, СКП и СКО являются одинаковой оценкой рассеяния результатов измерений.

Средняя квадратическая погрешность результата измерений среднего арифметического - показывает отклонение выборочного среднего от математического ожидания.

,

где S – средняя квадратическая погрешность результатов единичных измерений, полученная из ряда равноточных измерений; n - число единичных измерений в ряду.

Доверительные границы погрешности результата измерений - наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений. (Доверительные границы в случае нормального закона распределения вычисляются как ±t р ·S, где t р – коэффициент, зависящий от доверительной вероятности P и числа измерений n).

Границы доверительного интервала определяются как:

()

Поправка - значение величины, вводимое в неисправленный результат измерения с целью исключения составляющих систематической погрешности (знак поправки противоположен знаку погрешности).

Критерий отсеивания промахов для наперёд заданной доверительной вероятности (критерий Романовского) - для всех результатов X i , не являющихся выбросами (промахами) выполняются следующие условия:

,

где t p - квантиль (коэффициент).

Промах - погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда (промах - грубая погрешность измерений).

Предельная погрешность измерения в ряду измерений - максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи ().

Нормальное распределение случайных величин возникает тогда, когда на результат измерения действует множество факторов (случайных), ни один из которых не является преобладающим.

Функция нормального распределения:

,

где X i – i-е значение случайной величины (СВ),

M[X] – математическое ожидание СВ,

σ x – СКО отдельного результата измерений.

Нормальный закон распределения.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Теоретическая (фундаментальная) метрология – раздел метрологии предметом которого является разработка фундаментальных основ метрологии.

Законодательная метрология – раздел метрологии, предметом которого является установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимости точности измерений в интересах общества.

Практическая (прикладная) метрология – раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.

(Гранеев)

Физическая величина - свойство, общее в качественном отношении для множества объектов и индивидуальное в количественном отношении для каждого из них.

Размер физической величины – количественное содержание свойства (или выражение размера физической величины), соответствующего понятию «физическая величина», присущее данному объекту.

Значение физической величины - количественная оценка измеряемой величины в виде некоторого числа принятых для данной величины единиц.

Единица измерения физической величины – физическая величина фиксированного размера, которой присвоено числовое значение, равное единицы, и применяемая для количественного выражения однородных с ней физических величин.

При измерениях используют понятия истинного и действительного значения физической величины. Истинное значение физической величины – значение величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Действительное значение физической величины – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств.

Главные признаки понятия «измерение»:

а) измерять можно свойства реально существующих объектов познания, т. е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средства - средства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической величины.

Характеристики измерений: принцип и метод измерений, результат, погрешность, точность, сходимость, воспроизводимость, правильность и достоверность.

Принцип измерения – физическое явление или эффект, положенное в основу измерений. Например:

Метод измерения – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Например:

Результат измерения – значение величины, полученное путем ее измерения.

Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.

Точность результата измерений – одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерения.

Сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью. Сходимость измерений отражает влияние случайных погрешностей на результат измерения.

Воспроизводимость – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и др.).

Правильность – характеристика качества измерений, отражающая близость к нулю систематических погрешностей в их результатах.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется вероятностью (доверительной) того, что истинное значение измеряемой величины находится в указанных границах (доверительных).

Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. Единицы, образующие какую-нибудь систему, называют системными единицами, а единицы, не входящие ни в одну из систем, - внесистемными.

В 1960г. 11 Генеральная конференция по мерам и весам утвердила Международную систему единиц – СИ, которая включает в себя систему единиц МКС (механические единицы) и систему МКСА (электрические единицы).

Системы единиц строятся из основных и производных единиц. Основные единицы образуют минимальный набор независимых исходных единиц, а производные единицы представляют собой различные комбинации основных единиц.

Виды и методы измерений

Для выполнения измерений необходимо осуществление следующих измерительных операций: воспроизведения, сравнения, измерительного преобразования, масштабирования.

Воспроизведение величины заданного размера – операция создания выходного сигнала с заданным размером информативного параметра, т. е. величиной напряжения, тока, сопротивления и т. д. Эта операция реализуется средством измерений – мерой.

Сравнение – определение соотношения между однородными величинами, осуществляемое путем их вычитания. Эта операция реализуется устройством сравнения (компаратором).

Измерительное преобразование – операция преобразования входного сигнала в выходной, реализуемая измерительным преобразователем.

Масштабирование – создание выходного сигнала, однородного с входным, размер информативного параметра которого пропорционален в К раз размеру информативного параметра входного сигнала. Масштабное преобразование реализуется в устройстве, которое называется масштабным преобразователем.

Классификация измерений:

по числу измерений – однократные, когда измерения выполняют один раз, и многократные – ряд однократных измерений физической величины одного и того же размера;

характеристике точности – равноточные – это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью, и неравноточные , когда ряд измерений какой-либо величины выполняется различающимися по точности средствами измерений и в разных условиях;

характеру изменения во времени измеряемой величины – статические, когда значение физической величины считается неизменным на протяжении времени измерения, и динамические – измерения изменяющиеся по размеру физической величины;

способу представления результатов измерений – абсолютные измерения величины в ее единицах, и относительные – измерения изменений величины по отношению к одноименной величине, принимаемой за исходную.

способу получения результата измерения (способу обработки экспериментальных данных) – прямые и косвенные, которые делят на совокупные или совместные.

Прямое измерение - измерение, при котором искомое значение величины находят непосредственно из опытных данных в результате выполнения измерения. Пример прямого измерения - измерение вольтметром напряжения источника.

Косвенное измерение - измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенном измерении значение измеряемой величины получают путем решения уравнения х = F(х1 , х2 , х3 , ...., х n), где х1 , х2 , х3 , ...., х n - значения величин, полученных прямыми измерениями.

Пример косвенного измерения: сопротивление резистора R находят из уравнения R= U/ I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него.

Совместные измерения - одновременные измерения нескольких неодноименных величин для нахождения зависимости между ними. При этом решают систему уравнений

F(х1 , х2, х3 , ...., хn, х1́ , х2́, х3́ , ...., хḿ) = 0;

F(х1 , х2, х3 , ...., хn, х1΄΄ , х2΄΄, х3΄΄ , ...., хm΄΄) = 0;

…………………………………………………

F(х1 , х2, х3 , ...., хn, х1(n) , х2(n), х3(n), ...., хm(n)) = 0,

где х1 , х2 , х3 , ...., хn – искомые величины; х1́ , х2́, х3́ , ...., хḿ ; х1΄΄ , х2΄΄, х3΄΄ , ...., хm΄΄; х1(n) , х2(n), х3(n), ...., хm(n) - значения измеренных величин.

Пример совместного измерения: определяют зависимость сопротивления резистора от температуры Rt = R0(1 + At + Bt2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры R0, А и В зависимости.

Совокупные измерения - одновременные измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, составленных из результатов прямых измерений различных сочетаний этих величин.

Пример совокупного измерения: измерение сопротивлений резисторов, соединенных треугольником, путем измерения сопротивлений между различными вершинами треугольника; по результатам трех измерений определяют сопротивления резисторов.

Взаимодействие средств измерений с объектом основано на физических явлениях, совокупность которых составляет принцип измерений , а совокупность приемов использования принципа и средств измерений называют методом измерений .

Методы измерения классифицируют по следующим признакам:

по физическому принципу положенному в основу измерения – электрические, механические, магнитные, оптические и т. д.;

степени взаимодействия средства и объекта измерения – контактный и бесконтактный;

режиму взаимодействия средства и объекта измерения – статические и динамические;

виду измерительных сигналов – аналоговые и цифровые;

организации сравнения измеряемой величины с мерой – методы непосредственной оценки и сравнения с мерой.

При методе непосредственной оценки (отсчета) значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого преобразования, шкала которого заранее была градуирована с помощью многозначной меры, воспроизводящей известные значения измеряемой величины. В приборах прямого преобразования в процессе измерения оператором производится сравнение положения указателя отсчетного устройства и шкалы, по которой производится отсчет. Измерение силы тока с помощью амперметра - пример измерения по методу непосредственной оценки.

Методы сравнения с мерой - методы, при которых производится сравнение измеряемой величины и величины, воспроизводимой мерой. Сравнение может быть непосредственным или опосредствованным через другие величины, однозначно связанные с первыми. Отличительной чертой методов сравнения является непосредственное участие в процессе измерения меры известной величины, однородной с измеряемой.

Группа методов сравнения с мерой включает в себя следующие методы: нулевой, дифференциальный , замещения и совпадения.

При нулевом методе измерения разность измеряемой величины и известной величины или разность эффектов, производимых измеряемой и известной величинами, сводится в процессе измерения к нулю, что фиксируется высокочувствительным прибором - нуль-индикатором. При высокой точности мер, воспроизводящих известную величину, и высокой чувствительности нуль-индикатора может быть достигнута высокая точность измерений. Примером применения нулевого метода является измерение сопротивления резистора с помощью четырех-плечего моста, в котором падение напряжения на резисторе

с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

При дифференциальном методе разность измеряемой величины и величины известной, воспроизводимой мерой, измеряется с помощью измерительного прибора. Неизвестная величина определяется по известной величине и измеренной разности. В этом случае уравновешивание измеряемой величины известной величиной производится не полностью и в этом заключается отличие дифференциального метода от нулевого. Дифференциальный метод также может обеспечить высокую точность измерения, если известная величина воспроизводится с высокой точностью и разность между ней и неизвестной величиной мала.

В качестве примера измерения с использованием этого метода является измерение напряжения Ux постоянного тока с помощью дискретного делителя R напряжения U и вольтметра V (рис. 1). Неизвестное напряжение Ux = U0 + ΔUx, где U0- известное напряжение, ΔUx -измеренная разность напряжений.

При методе замещения производится поочередное подключение на вход прибора измеряемой величины и известной величины и по двум показаниям прибора оценивается значение неизвестной величины. Наименьшая погрешность измерения получается в том случае, когда в результате подбора известной величины прибор дает тот же выходной сигнал, что и при неизвестной величине. При этом методе может быть получена высокая точность измерения при высокой точности меры известной величины и высокой чувствительности прибора. Примером этого метода является точное измерение малого напряжения с помощью высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

При методе совпадения измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали.

КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ

Средство измерений (СИ) – техническое средство, предназначенное для измерений, нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По назначению СИ подразделяются на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Различают меры:

- однозначные – воспроизводящие физическую величину одного размера;

- многозначные – воспроизводящие физическую величину разных размеров;

- набор мер – комплект мер разного размера одной и той же физической величины, предназначенных для практического применения как в отдельности, так и в различных сочетаниях;

- магазин мер – набор мер конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях.

Измерительный преобразователь – техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал удобный для обработки. Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между выходной и входной величинами преобразователя.

Измерительные преобразователи могут быть классифицированы по признакам:

по характеру преобразования различают следующие виды измерительных преобразователей: электрических величин в электрические, магнитных в электрические, неэлектрических в электрические;

месту в измерительной цепи и функциям различают первичные, промежуточные, масштабные, и передающие преобразователи.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

Измерительные приборы подразделяются:

по форме регистрации измеряемой величины – на аналоговые и цифровые;

применению – амперметры, вольтметры, частотомеры, фазометры осциллографы и т. д.;

назначению – приборы для измерения электрических и неэлектрических физических величин;

действию – интегрирующие и суммирующие;

способу индикации значений измеряемой величины – показывающие, сигнализирующие и регистрирующие;

методу преобразования измеряемой величины – непосредственной оценки (прямого преобразования) и сравнения;

способу применения и по конструкции – щитовые, переносные, стационарные;

защищенности от воздействия внешних условий – обыкновенные, влаго-, газо-, пылезащищенные, герметичные, взрывобезопасные и др.

Измерительные установки – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте.

Измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях. В зависимости от назначения измерительные системы подразделяют на информационные, контролирующие, управляющие и др.

Измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По метрологическим функциям СИ подразделяются на эталоны и рабочие средства измерений.

Эталон единицы физической величины – средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

Рабочее средство измерений – это средство измерений, используемое в практике измерений и не связанное с передачей единиц размера физических величин другим средствам измерений.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ

Метрологическая характеристика средства измерений – характеристика одного из свойств средства измерений, влияющая на результат и погрешность его измерений. Метрологические характеристики, устанавливаемые нормативно-техническими документами, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действительными метрологическими характеристиками.

Функция преобразования (статическая характеристика преобразования) – функциональная зависимость между информативными параметрами выходного и входного сигналов средства измерений.

Погрешность СИ – важнейшая метрологическая характеристика, определяемая как разность между показанием средства измерений и истинным (действительным) значением измеряемой величины.

Чувствительность СИ – свойство средства измерений, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины. Различают абсолютную и относительную чувствительность. Абсолютную чувствительность определяют по формуле

Относительную чувствительность – по формуле

,

где ΔY – изменение сигнала на выходе; ΔX – изменение измеряемой величины, Х – измеряемая величина.

Цена деления шкалы ( постоянная прибора) – разность значения величины, соответствующая двум соседним отметкам шкалы СИ.

Порог чувствительности – наименьшее значение изменения физической величины, начиная с которого может осуществляться ее измерение данным средством. Порог чувствительности в единицах входной величины.

Диапазон измерений – область значений величины, в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон измерений снизу и сверху (слева и справа), называют соответственно нижним и верхним пределом измерений. Область значений шкалы прибора, ограниченную начальными и конечными значениями шкалы, называют диапазон показаний.

Вариация показаний – наибольшая вариация выходного сигнала прибора при неизменных внешних условиях. Она является следствием трения и люфтов в узлах приборов, механического и магнитного гистерезиса элементов и др.

Вариация выходного сигнала – это разность между значениями выходного сигнала, соответствующими одному и тому же действительному значению входной величины при медленном подходе слева и справа к выбранному значению входной величины.

Динамические характеристики, т. е. характеристики инерционных свойств (элементов) измерительного устройства, определяющие зависимость выходного сигнала СИ от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки.

КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ

Процедура измерения состоит из следующих этапов: принятие модели объекта измерения, выбор метода измерения, выбор СИ, проведение эксперимента для получения результата. В итоге результат измерения отличается от истинного значения измеряемой величины на некоторую величину, называемую погрешностью измерения . Измерение можно считать законченным, если определена измеряемая величина и указана возможная степень ее отклонения от истинного значения.

По способу выражения погрешности средств измерения делятся на абсолютные, относительные и приведенные.

Абсолютная погрешность – погрешность СИ, выраженная в единицах измеряемой физической величины:

Относительная погрешность – погрешность СИ, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины:

Для измерительного прибора γотн характеризует погрешность в данной точке шкалы, зависит от значения измеряемой величины и имеет наименьшее значение в конце шкалы прибора.

Приведенная погрешность – относительная погрешность, выраженная отношением абсолютной погрешности СИ к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:

где Хнорм – нормирующее значение, т. е. некоторое установленное значение, по отношению к которому рассчитывается погрешность. Нормирующим значением может быть верхний предел измерений СИ, диапазон измерений, длина шкалы и т. д.

По причине и условиям возникновения погрешности средств измерения подразделяются на основную и дополнительную.

Основная погрешность – это погрешность СИ, находящихся в нормальных условиях эксплуатации.

Дополнительная погрешность – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Предел допускаемой основной погрешности – наибольшая основная погрешность, при которой СИ может быть признано годным и допущено к применению по техническим условиям.

Предел допускаемой дополнительной погрешности – это та наибольшая дополнительная погрешность, при которой средство измерения может быть допущено к применению.

Обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность, называется классом точности СИ.

Систематическая погрешность – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся.

Случайная погрешность – составляющая погрешности СИ, изменяющаяся случайным образом.

Промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями.

По зависимости от значения измеряемой величины погрешности СИ подразделяют на аддитивные, не зависящие от значения входной величины Х, и мультипликативные – пропорциональные Х.

Аддитивная погрешность Δадд не зависит от чувствительности прибора и является постоянной по величине для всех значений входной величины Х в пределах диапазона измерений. Пример: погрешность нуля, погрешность дискретности (квантования) в цифровых приборах. Если прибору присуща только аддитивная погрешность или она существенна превышает другие составляющие, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Мультипликативная погрешность зависит от чувствительности прибора и изменяется пропорционально текущему значению входной величины. Если прибору присуща только мультипликативная погрешность или она существенна, то предел допускаемой относительной погрешности выражают в виде относительной погрешности. Класс точности таких СИ обозначают одним числом, помещенным в кружок и равным пределу допускаемой относительной погрешности.

В зависимости от влияния характера изменения измеряемой величины погрешности СИ подразделяют на статические и динамические.

Статические погрешности – погрешность СИ применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность – погрешность СИ, возникающая при измерении изменяющейся (в процессе измерений) физической величины, являющаяся следствием инерционных свойств СИ.

СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ

По характеру изменения систематические погрешности разделяют на постоянные (сохраняющие величину и знак) и переменные (изменяющиеся по определенному закону).

По причинам возникновения систематические погрешности подразделяют на методические, инструментальные и субъективные.

Методические погрешности возникают вследствие несовершенства, неполноты теоретических обоснований принятого метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, из-за неправильного выбора измеряемых величин.

В большинстве случаев методические погрешности носят систематический характер, а иногда и случайный (например, когда коэффициенты рабочих уравнений метода измерения зависят от условий измерения, изменяющихся случайным образом).

Инструментальные погрешности обусловливаются свойствами применяемых СИ, их влиянием на объект измерений, технологией и качеством изготовления.

Субъективные погрешности вызываются состоянием оператора, проводящего измерения, его положением во время работы несовершенством органов чувств, эргономическими свойствами средств измерений – все это сказывается на точности визирования.

Обнаружение причин и вида функциональной зависимости позволяет скомпенсировать систематическую погрешность введением в результат измерения соответствующих поправок (поправочных множителей).

СЛУЧАЙНЫЕ ПОГРЕШНОСТИ

Полным описанием случайной величины, а следовательно и погрешности, является ее закон распределения, которым определяется характер появления различных результатов отдельных измерений.

В практике электрических измерений встречаются различные законы распределения, некоторые из которых рассмотрены ниже.

Нормальный закон распределения (закон Гаусса). Этот закон является одним из наиболее распространенных законов распределения погрешностей. Объясняется это тем, что во многих случаях погрешность измерения образуется под действием большой совокупности различных, независимых друг от друга причин. На основании центральной предельной теоремы теории вероятностей результатом действия этих причин будет погрешность, распределенная по нормальному закону при условии, что ни одна из этих причин не является существенно преобладающей.

Нормальный закон распределения погрешностей описывается формулой

где ω(Δx) -плотность вероятности погрешности Δx; σ[Δx]- среднее квадратическое отклонение погрешности; Δxc - систематическая составляющая погрешности.

Вид нормального закона представлен на рис. 1,а для двух значений σ[Δx]. Так как

То закон распределения случайной составляющей погрешности

имеет тот же вид (рис 1,б) и описывается выражением

где - среднее квадратическое отклонение случайной составляющей погрешности; = σ [Δx]

Рис. 1. Нормальный закон распредёления погрешности измерений (а) и случайной составляющей погрешности измерений (б)

Таким образом, закон распределения погрешности Δx отличается от закона распределения случайной составляющей погрешности только сдвигом по оси абсцисс на величину систематической составляющей погрешности Δхс.

Из теории вероятностей известно, что площадь под кривой плотности вероятности характеризует вероятность появления погрешности. Из рис.1, б видно, что вероятность Р появления погрешности в диапазоне ± при больше, чем при (площади, характеризующие эти вероятности, заштрихованы). Полная площадь под кривой распределения всегда равна 1, т. е. полной вероятности.

Учитывая это, можно утверждать, что погрешности, абсолютные значения которых превышают появляются с вероятностью, равной 1 - Р, которая при меньше, чем при . Следовательно, чем меньше , тем реже встречаются большие погрешности, тем точнее выполнены измерения. Таким образом, Среднее квадратическое отклонение можно использовать для характеристики точности измерений:

Равномерный закон распределения. Если погрешность измерений с одинаковой вероятностью может принимать любые значения, не выходящие за некоторые границы, то такая погрешность описывается равномерным законом распределения. При этом плотность вероятности погрешности ω(Δx) постоянна внутри этих границ и равна нулю вне этих границ. Равномерный закон распределения представлен на рис. 2. Аналитически он может быть записан так:

При –Δx1 ≤ Δx ≤ + Δx1;

Рис 2. Равномерный закон распределения

С таким законом распределения хорошо согласуется погрешность от трения в опорах электромеханических приборов, не-исключенные остатки систематических погрешностей, погрешность дискретности в цифровых приборах.

Трапециевидный закон распределения. Это распределение графически изображено на рис.3, а. Погрешность имеет такой закон распределения, если она образуется из двух независимых составляющих, каждая из которых имеет равномерный закон распределения, но ширина интервала равномерных законов различна. Например, при последовательном соединении двух измерительных преобразователей, один из которых имеет погрешность, равномерно распределенную в интервале ±Δx1, а другой - равномерно распределенную в интервале ± Δx2, суммарная погрешность преобразования будет описываться трапециевидным законом распределения.

Треугольный закон распределения (закон Симпсона). Это распределение (см. рис.3, б) является частным случаем трапециевидного, когда составляющие имеют одинаковые равномерные законы распределения.

Двухмодальные законы распределения. В практике измерений встречаются двухмодальные законы распределения, т. е. законы распределения, имеющие два максимума плотности вероятности. В двухмодальный закон распределения, который может быть в приборах, имеющих погрешность от люфта кинематических механизмов или от гистерезиса при перемагничивании деталей прибора.

Рис.3. Трапециевидный (а) и треугольный (б) законы распределения

Вероятностный подход к описанию погрешностей. Точечные оценки законов распределения.

Когда при проведении с одинаковой тщательностью и в одинаковых условиях повторных наблюдений одной и той же постоянной величины получаем результаты. отличающиеся друг от друга, это свидетельствует о наличии в них случайных погрешностей. Каждая такая погрешность возникает вследствие одновременного воздействия на результат наблюдения многих случайных возмущений и сама является случайной величиной. В этом случае предсказать результат отдельного наблюдения и исправить его введением поправки невозможно. Можно лишь с определенной долей уверенности утверждать, что истинное значение измеряемой величины находится в пределах разброса результатов наблюдений от л>.т до Хп. ах, где хтт. Ат<а - соответственно, нижняя и верхняя границы разброса. Однако остается неясным, какова вероятность появления того или ^иного значения погрешности, какое из множества лежащих в этой области значений величины принять за результат измерения и какими показателями охарактеризовать случайную погрешность результата. Для ответа на эти вопросы требуется принципиально иной, чем при анализе систематических погрешностей, подход. Подход этот основывается на рассмотрении результатов наблюдений, результатов измерений и случайных погрешностей как случайных величин. Методы теории вероятностен и математической статистики позволяют установить вероятностные (статистические) закономерности появления случайных погрешностей и на основании этих закономерностей дать количественные оценки результата измерения и его случайной погрешности

На практике все результаты измерений и случайные погрешности являются величинами дискретными, т. е. величинами xi, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределения на основании выборок - ряда значений xi, принимаемых случайной величиной x в n независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т. е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок - частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон

распределения - от законов распределения самих случайных величин.

Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики. Несмещенной называется оценка, математическое ожидание которой равно оцениваемой числовой характеристике. Наиболее эффективной считают ту из «нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию . Требование несмещенности на практике не всегда целесообразно, так как оценка с небольшим смещением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не всегда удается удовлетворить одновременно все три этих требования, однако выбору оценки должен предшествовать ее критический анализ со всех перечисленных точек зрения.

Наиболее распространенным методом получения оценок является метод наибольшего правдоподобия, который приводит к асимптотически несмещенным и эффективным оценкам с приближенно нормальным распределением. Среди других методов можно назвать методы моментов и наименьших квадратов.

Точечной оценкой МО результата измерений является среднее арифметическое значение измеряемой величины

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

является несмещенной и состоятельной.

СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от

k(3) = 1,13 до k(∞) 1,03. Оценка среднего квадратического отклонения

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Рассеяние этих оценок целесообразно оценивать с помощью СКО Sx Sσ.

Оценка СКО среднего арифметического значения

Оценка СКО среднего квадратического отклонения

Отсюда следует, что относительная погрешность определения СКО может быть

оценена как

.

Она зависит только от эксцесса и числа наблюдений в выборке и не зависит от СКО, т. е. той точности, с которой производятся измерения. Ввиду того, что большое число измерений проводится относительно редко, погрешность определения σ может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадратного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

т. е. считают k(n)=1.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

Точечные оценки других параметров распределений используются значительно реже. Оценки коэффициента асимметрии и эксцесса находятся по формулам

Определение рассеяния оценок коэффициента асимметрии и эксцесса описывается различными формулами в зависимости от вида распределения. Краткий обзор этих формул приведен в литературе.

Вероятностный подход к описанию случайных погрешностей.

Центр и моменты распределения.

В результате измерения получают значение измеряемой величины в виде числа в принятых единицах величины. Погрешность измерения тоже удобно выражать в виде числа. Однако погрешность измерения является случайной величиной, исчерпывающим описанием которой может быть только закон распределения. Из теории вероятностей известно, что закон распределения можно охарактеризовать числовыми характеристиками (неслучайными числами), которые и используются для количественной оценки погрешности.

Основными числовыми характеристиками законов распределения являются математическое ожидание и дисперсия, которые определяются выражениями:

где М - символ математического ожидания; D - символ дисперсии.

Математическое ожидание погрешности измерений есть неслучайная величина, относительно которой рассеиваются другие значения погрешностей при повторных измерениях. Математическое ожидание характеризует систематическую составляющую погрешности измерения, т. е. М [Δх]=ΔxC. Как числовая характеристика погрешности

М [Δх] показывает на смещенность результатов измерения относительно истинного значения измеряемой величины.

Дисперсия погрешности D [Δх] характеризует степень рассеивания (разброса) отдельных значений погрешности относительно математического ожидания. Так как рассеивание происходит за счет случайной составляющей погрешности то .

Чем меньше дисперсия, тем меньше разброс, тем точнее выполнены измерения. Следовательно, дисперсия может служить характеристикой точности проведенных измерений. Однако дисперсия выражается в единицах погрешности в квадрате. Поэтому в качестве числовой характеристики точности измерений используют среднее квадратическое отклонение с положительным знаком и выражаемое в единицах погрешности.

Обычно при проведении измерений стремятся получить результат измерения с погрешностью, не превышающей допускаемое значение. Знание только среднего квадратического отклонения не позволяет найти максимальную погрешность, которая может встретиться при измерениях, что свидетельствует об ограниченных возможностях такой числовой характеристики погрешности, как σ[Δx]. Более того, при разных условиях измерений, когда законы распределения погрешностей могут отличаться друг от друга, погрешность с меньшей дисперсией может принимать большие значения.

Максимальные значения погрешности зависят не только от σ[Δx], но и от вида закона распределения. Когда распределение погрешности теоретически неограниченно, например при нормальном законе распределения, погрешность может быть любой по значению. В этом случае можно лишь говорить об интервале, за границы которого погрешность не выйдет с некоторой вероятностью. Этот интервал называют доверительным интервалом, характеризующую его вероятность - доверительной вероятностью, а границы этого интервала - доверительными значениями погрешности.

В практике измерений применяют различные значения доверительной вероятности, например: 0,90; 0,95; 0,98; 0,99; 0,9973 и 0,999. Доверительный интервал и доверительную вероятность выбирают в зависимости от конкретных условий измерений. Так, например, при нормальном законе распределения случайных погрешностей со средним квадратическим отклонением часто пользуются доверительным интервалом от до , для которого доверительная вероятность равна

0,9973. Такая доверительная вероятность означает, что в среднем из 370 случайных погрешностей только одна погрешность по абсолютному значению будет

больше .Так как на практике число отдельных измерений редко превышает несколько десятков, появление даже одной случайной погрешности, большей, чем

Маловероятное событие, наличие же двух подобных погрешностей почти невозможно. Это позволяет с достаточным основанием утверждать, что все возможные случайные погрешности измерения, распределенные по нормальному закону, практически не превышают по абсолютному значению (правило «трех сигм»).

В соответствии с ГОСТ доверительный интервал является одной из основных характеристик точности измерений. Одну из форм представления результата измерения этот стандарт устанавливает в следующем виде: x; Δx от Δxн до Δxв1; Р, где x - результат измерения в единицах измеряемой величины; Δx, Δxн, Δxв - соответственно погрешность измерения с нижней и верхней ее границами в тех же единицах; Р - вероятность, с которой погрешность измерения находится в этих границах.

ГОСТ допускает и другие формы представления результата измерения, отличающиеся от приведенной формы тем, что в них указывают раздельно характеристики систематической и случайной составляющих погрешности измерения. При этом для систематической погрешности указывают ее вероятностные характеристики. Ранее уже отмечалось, что иногда систематическую погрешность приходится оценивать с вероятностных позиций. В этом случае основными характеристиками систематической погрешности являются М [Δхс], σ [Δхс] и ее доверительный интервал. Выделение систематической и случайной составляющих погрешности целесообразно, если результат измерения будет использован при дальнейшей обработке данных, например при определении результата косвенных измерений и оценке его точности, при суммировании погрешностей и т. п.

Любая из форм представления результата измерения, предусмотренная ГОСТ должна содержать необходимые данные, на основании которых может быть определен доверительный интервал для погрешности результата измерения. В общем случае доверительный интервал может быть установлен, если.известен вид закона распределения погрешности и основные числовые характеристики этого закона.

________________________

1 Δxн и Δxв должны быть указаны со своими знаками. В общем случае |Δxн| может быть не равна |Δxв|. Если границы погрешности симметричны, т. е. |Δxн| = |Δxв| = Δx, то результат измерения может быть записан так: x ±Δx; P.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ

Электромеханический прибор включает в себя измерительную цепь, измерительный механизм и отсчетное устройство.

Магнитоэлектрические приборы.

Магнитоэлектрические приборы состоят из магнитоэлектрического измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных токов и напряжений, сопротивлений, количества электричества (баллистические гальванометры и кулонметры), также для измерения или индикации малых токов и напряжений (гальванометры). Кроме того, магнитоэлектрические приборы используют для регистрации электрических величин (самопишущие приборы и осциллографические гальванометры).

Вращающий момент в измерительном механизме магнитоэлектрического прибора возникает в результате взаимодействия магнитного поля постоянного магнита и магнитного поля катушки с током. Применяют магнитоэлектрические механизмы с подвижной катушкой и с подвижным магнитом. (наиболее распространены с подвижной катушкой).

Достоинства: высокая чувствительность, малое собственное потребление энергии, линейная и стабильная номинальная статическая характеристика преобразования α=f(I), отсутствие влияния электрических полей и мало влияние магнитных полей (из-за достаточно сильного поля в воздушном зазоре (0.2 – 1.2Тл)).

Недостатки: малая перегрузочная способность по току, относительная сложность и дороговизна., реагируют только на постоянный ток.

Электродинамические (ферродинамические) приборы.

Электродинамические (ферродинамические) приборы состоят из электродинамического (ферродинамического) измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных и переменных токов и напряжений, мощности в цепях постоянного и переменного тока, угла фазового сдвига между переменными токами и напряжениями. Электродинамические приборы являются наиболее точными электромеханическими приборами для цепей переменного тока.

Вращающий момент в электродинамических и ферродинамических измерительных механизмах возникает в результате взаимодействия магнитных полей неподвижных и подвижных катушек с токами.

Достоинства: работают как на постоянном так и на переменном токе (до 10кГц) с высокой точностью и высокой стабильностью своих свйств.

Недостатки: электродинамические измерительные механизмы имеют низкую чувствительность по сравнению с магнитоэлектрическими механизмами. Поэтому они обладают большим собственным потреблением мощности. Электродинамические измерительные механизмы имеют малую перегрузочную способность по току, относительно сложны и дороги.

Ферродинамический измерительный механизм отличается от электродинамического механизма тем, что его неподвижные катушки имеют магнитопровод из магнитомягкого листового материала, позволяющий существенно увеличивать магнитный поток, а следовательно, и вращающий момент. Однако использование ферромагнитного сердечника приводит к появлению погрешностей, вызванных его влиянием. При этом ферродинамические измерительные механизмы мало подвержены влиянию внешних магнитных полей.

Электромагнитные приборы

Электромагнитные приборы состоят из электромагнитного измерительного механизма с отсчетным устройством и измерительной цепи. Они применяются для измерения переменных и постоянных токов и напряжений, для измерения частоты и фазового сдвига между переменным током и напряжением. Из-за относительно низкой стоимости и удовлетворительных характеристик электромагнитные приборы составляют большую часть всего парка щитовых приборов.

Вращающий момент в этих механизмах возникает в результате взаимодействия одного или нескольких ферромагнитных сердечников подвижной части и магнитного поля катушки, по обмотке которой протекает ток.

Достоинства: простота конструкции и дешевизна, высокая надежность в работе, способность выдерживать большие перегрузки, способность работать в цепях как постоянного так и переменного тока (примерно до 10кГц).

Недостатки: малая точность и низкая чувствительность, сильное влияние на работу внешних магнитных полей.

Электростатические приборы.

Основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством. Они применяются главным образом для измерения напряжений переменного и постоянного тока.

Вращающий момент в электростатических механизмах возникает в результате взаимодействия двух систем заряженных проводников, одна из которых является подвижной.

Индукционные приборы.

Индукционные приборы состоят из индукционного измерительного механизма с отсчетным устройством и измерительной схемой.

Принцип действия индукционных измерительных механизмов основан на взаимодействии магнитных потоков электромагнитов и вихревых токов, индуктированных магнитными потоками в подвижной части, выполненной в виде алюминиевого диска. В настоящее время из индукционных приборов находя применение счетчики электрической энергии в цепях переменного тока.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения. Погрешность измерения Δx = x - xи, где х - измеренное значение; xи - истинное значение.

Поскольку истинное значение неизвестно, практически по­грешность измерения оценивают, исходя из свойств средства измерений, условий проведения эксперимента и анализа получен­ных результатов. Полученный результат отличается от истинного значения, поэтому результат измерения имеет ценность только в том случае, если дана оценка погрешности полученного значе­ния измеряемой величины. Причем чаще всего определяют не конкретную погрешность результата, а степень недостоверно­сти - границы зоны, в которой находится погрешность.

Часто применяют понятие «точность измерения», - понятие отражающее близость результата измерения к истинному значению измеряемой величины. Высокая точность измерения соответствует малой погрешности измерения.

В качестве основных могут быть выбраны любые из данного числа величин, но практически выбирают величины, которые могут быть воспроизведены и измерены с наиболее высокой точ­ностью. В области электротехники основными величинами приня­ты длина, масса, время и сила электрического тока.

Зависимость каждой производной величины от основных ото­бражается её размерностью. Размерность величины представля­ет собой произведение обозначений основных величин, возведен­ных в соответствующие степени, и является ее качественной характеристикой. Размерности величин определяют на основе соответствующих уравнений физики.

Физическая величина является размерной, если в ее размер­ность входит хотя бы одна из основных величин, возведенная в степень, не равную нулю. Большинство физических величин являются размерными. Однако имеются безразмерные (относи­тельные) величины, представляющие собой отношение данной физической величины к одноименной, применяемой в качестве исходной (опорной). Безразмерными величинами являются, на­пример, коэффициент трансформации, затухание и т. д.

Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазо­не, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т. д.). Квантованная величина имеет в заданном диапа­зоне только счетное множество размеров. Примером такой вели­чины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Раз­меры квантованной величины могут соответствовать только определенным уровням - уровням квантования. Разность двух со­седних уровней квантования называют ступенью квантования (квантом).

Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины могут выть постоянными или перемен­ными во времени. При измерении постоянной во времени величи­ны достаточно определить одно ее мгновенное значение. Перемен­ные во времени величины могут иметь квазидетерминированный или случайный характер изменения.

Квазидетерминированная физическая величина - величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина - величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т. е. величины, размеры которых отличны от нуля только в опреде­ленные моменты времени.

Физические величины делят на активные и пассивные. Актив­ные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации (см. да­лее). Пассивные величины (например, масса, электрическое со­противление, индуктивность) сами не могут создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен проте­кать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физиче­ской величины . Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепри­нятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями. Единицы физических величин, согласно которому в нашей стране введена к обяза­тельному применению международная система единиц (СИ).

При изучении объекта исследования необходимо выделить для измерений физические величины, учитывая цель измерении, которая сводится к изучению или оценке каких-либо свойств объекта. Поскольку реальные объекты обладают бесконечным множеством свойств, то для получения результатов измерений, адекватных цели измерений, выделяют в качестве измеряемых величин определенные свойства объектов, существенные при выбранной цели, т. е. выбирают модель объекта.

СТАНДАРТИЗАЦИЯ

Государственная система стандартизации (ДСС) в Украине регламентирована в основных стандартах к ней:

ДСТУ 1.0 – 93 ДСС. Оснвные положения.

ДСТУ 1.2 – 93 ДСС. Порядок разработки государственных (национальных) стандартов.

ДСТУ 1.3 – 93 ДСС. Порядок разработки построения, изложения, оформления, согласования, утверждения, обозначения и регистрации ТУ.

ДСТУ 1.4 – 93 ДСС. Стандарты предприятия. Основные положения.

ДСТУ 1.5 – 93 ДСС. Основные положения к построению, изложению, оформлению и содержанию стандартов;

ДСТУ 1.6 – 93 ДСС. Порядок государственной регистрации отраслевых стандартов, стандартов научно-технических и инженерных товариществ и сообществ (союзов).

ДСТУ 1.7 – 93 ДСС. Правила и методы принятия и применения международных и региональных стандартов.

Органами стандартизации являются:

Центральный орган исполнительной власти в сфере стандартизации ДКТРСП

Совет стандартизации

Технические комитеты стандартизации

Другие субъекты, которые занимаются стандартизацией.

Классификация нормативных документов и стандартов действующих в Украине.

Международные нормативные документы, стандарты и рекоментации.

Гос. Стандарты Украины.

Республиканские стандарты бывшей УССР, утвержденные до 01.08.91.

Настановчі документы Украины (КНД и Р)

Гос. Классификаторы Украины (ДК)

Отраслевые стандарты и ТУ бывшего СССР, утвержденные до 01.01.92 с продленными сроками действия.

Отраслевые стандарты Украины зарегестрированные в УкрНДИССИ

ТУ зарегестрированные территориальными органами стандартизации Украины.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то