Высшая органическая химия. Основные понятия и законы органической химиии. Связь органической химии с химической промышленностью

СИБИРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

СПРАВОЧНИК СТУДЕНТА

по ОРГАНИЧЕСКОЙ ХИМИИ

для специальностей технического и экономического профилей

Составила: преподаватель

2012

Структура « СПРАВОЧНИКА СТУДЕНТА по ОРГАНИЧЕСКОЙ ХИМИИ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

СС по органической химии составлен для оказания помощи обучающимся в создании научной картины мира через химическое содержание с учетом межпредметных и внутрипредметных связей, логики учебного процесса.

В СС по органической химии представлено минимальное по объему, но функционально полное содержание для освоения государственного стандарта химического образования.

СС по органической химии выполняет две основные функции:

I. Информационная функция позволяет участникам образовательного процесса получить представление о содержании, структуре предмета, взаимосвязи понятий посредствам схем, таблиц и алгоритмов.

II. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, и создаёт представления о содержательном наполнении промежуточной и итоговой аттестации.

СС предполагает формирование системы знаний, умений и способов деятельности, развивает способность студентов работать со справочными материалами.

Наименование

Наименование

Хронологическая таблица «Развитие органической химии».

Химические свойства алкенов (этиленовых углеводородов).

Основные положения теории строения органических соединений

Химические свойства алкинов (ацетиленовых углеводородов).

Изомеры и гомологи.

Химические свойства аренов (ароматических углеводородов).

Значение ТСОС

Классификация углеводородов.

Генетическая связь органических веществ.

Гомологический ряд

АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ).

Взаимосвязь

«Строение - свойства - применение».

Гомологический ряд

РАДИКАЛЫОБРАЗОВАН-НЫЕ ОТ АЛКАНОВ.

Относительные молекулярные массы органических веществ

Словарь терминов по органической химии. Именные реакции.

Изомерия классов органических веществ.

Алгоритм решения задач.

Физические величины для решения задач.

Химические свойства алканов (предельных углеводородов).

Вывод формул соединений.

Примеры решения задач.

ХРОНОЛОГИЧЕСКАЯ ТАБЛИЦА «РАЗВИТИЕ ОРГАНИЧЕСКОЙ ХИМИИ»


Период/год. Кто?

Характер открытия

Древней-ший

Древний человек

Варить пищу, дубить кожи, изготавливать лекарства

Парацельс и др.

Изготовление более сложных по составу лекарств, изучение свойств веществ орг. происхождения, т. е. продуктов жизнедеятельности

XY-XYIII в. в.

Непрерывный процесс

Накопление знаний о различных веществах.

Главенство «ВИТАЛИСТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ»

Взрыв научной мысли, детонатором которой служили потребности людей в красителях, одежде, пище.

Йёнс Якоб Берцелиус (шведский химик)

Термин «органическая химия»

Фридрих Вёлер (нем.)

Синтез щавелевой кислоты

Понятие

Органическая химия – это раздел химической науки, изучающая соединения углерода.

Фридрих Вёлер (нем.)

Синтез мочевины

Синтез анилина

Адольф Кульбе (нем.)

Синтез уксусной кислоты из углерода

Э. Франкланд

Понятие «соединительная система» - валентность

Пьер Бертло (фр.)

Синтезировал этиловый спирт гидратацией этилена.

Синтез жиров.

«Химия не нуждается в жизненной силе!»

Синтез сахаристого вещества

Основываясь на различные теории (Франкланда, Жерара, Кекуле, Купера) создал ТСОС

Учебник «Введение в полное изучение органической химии». Органическая химия – это раздел химии, изучающий углеводороды и их производные .

ОСНОВНЫЕ ПОЛОЖЕНИЯ

ТЕОРИИ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

А. М. БУТЛЕРОВА

1. А. в М. соединены в определённой последовательности, согласно их валентности.

2. Свойства веществ зависят не только от качественного и количественного состава, но и от химического строения. Изомеры. Изомерия.

3. А. и группы А. взаимно влияют друг на друга.

4. По свойствам вещества можно определить строение, а по строению – свойства.

Изомеры и гомологи.

Качественный состав

Количествен­ный состав

Химическое строение

Химические свойства

Изомеры

одинаковый

одинаковый

различное

различные

Гомологи

одинаковый

различный

сходное

сходные

Значение ТСОС

1. Объяснила строение М. известных веществ и их свойства.

2. Дала возможность предвидеть существование неизвестных веществ и найти пути их синтеза.

3. Объяснить многообразие органических веществ.

Классификация углеводородов.

https://pandia.ru/text/78/431/images/image003_147.gif" width="708" height="984 src=">

Гомологический ряд

АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ)

Формула

Название

МЕТАН

С2Н6

ЭТАН

С3Н8

ПРОПАН

БУТАН

ПЕНТАН

ГЕКСАН

ГЕПТАН

ОКТАН

НОНАН

С10Н22

ДЕКАН

Гомологический ряд

РАДИКАЛЫОБРАЗОВАННЫХ ОТ АЛКАНОВ

Формула

Название

МЕТИЛ

С2Н5

ЭТИЛ

С3Н7

ПРОПИЛ

БУТИЛ

ПЕНТИЛ

ГЕКСИЛ

ГЕПТИЛ

ОКТИЛ

НОНИЛ

С10Н21

ДЕЦИЛ

Общие сведения об углеводородах.

DIV_ADBLOCK31">


Химические свойства алканов

(предельных углеводородов).

https://pandia.ru/text/78/431/images/image007_73.gif" width="610" height="835 src=">

Химические свойства алкинов

(ацетиленовых углеводородов).

https://pandia.ru/text/78/431/images/image009_68.gif" width="646" height="927 src=">

Генетическая связь между углеводородами.

https://pandia.ru/text/78/431/images/image011_36.jpg" width="696" height="919 src=">


Взаимосвязь «Строение - свойства - применение».

Способы

получения

Строение

Состав

Нахождение

в природе

Свойства

Применение

МОЛЕКУЛЯРНЫЕ МАССЫ НЕКОТЫРЫХ ОРГАНИЧЕСКИХВЕЩЕСТВ.

Название

Алканы

Галоген производные

Спирты и Фенолы

Простые эфиры

Альдегиды

Карбоновые кислоты

Нитросоединения


Алгоритм решения задач

1. Изучите внимательно условия задачи: определите, с какими величинами предстоит проводить вычисления, обозначьте их буквами, установите единицы их измерения, числовые значения, определите, какая величина является искомой.

2. Запишите данные задачи в виде кратких условий.

3. Если в условиях задачи идет речь о взаимодействии веществ, запишите уравнение реакции (реакций) и уравняйте его (их) коэффициентами.

4. Выясните количественные соотношения между данными задачи и искомой величиной. Для этого расчлените свои действия на этапы, начав с вопроса задачи, выяснения закономерности, с помощью которой можно определить искомую величину на последнем этапе вычислений. Если в исходных данных не хватает каких-либо величин, подумайте, как их можно вычислить, т. е. определите предварительные этапы расчета. Этих этапов может быть несколько.

5. Определите последовательность всех этапов решения задачи, запишите необходимые формулы расчетов.

6. Подставьте соответствующие числовые значения величин, проверьте их размерности, произведите вычисления.


Вывод формул соединений.

Этот вид расчетов чрезвычайно важен для химической практики, т. к. позволяет на основании экспериментальных данных определить формулу вещества (простейшую и молекулярную).

На основании данных качественного и количественного анализов химик находит сначала соотношение атомов в молекуле (или другой структурной единице вещества), т. е. его простейшую формулу.
Например, анализ показал, что вещество является углеводородом
CxHy, в котором массовые доли углерода и водорода соответственно равны 0,8 и 0,2 (80% и 20%). Чтобы определить соотношение атомов элементов, достаточно определить их количества вещества (число молей): Целые числа (1 и 3) получены делением числа 0,2 на число 0,0666. Число 0,0666 примем за 1. Число 0,2 в 3 раза больше, чем число 0,0666. Таким образом, CH3 является простейшей формулой данного вещества. Соотношению атомов C и H, равному 1:3, соответствует бесчисленное количество формул: C2H6, C3H9, C4H12 и т. д., но из этого ряда только одна формула является молекулярной для данного вещества, т. е. отражающей истинное количество атомов в его молекуле. Чтобы вычислить молекулярную формулу, кроме количественного состава вещества, необходимо знать его молекулярную массу.

Для определения этой величины часто используется значение относительной плотности газа D. Так, для вышеприведенного случая DH2 = 15. Тогда M(CxHy) = 15µM(H2) = 152 г/моль = 30 г/моль.
Поскольку M(CH3) = 15, то для соответствия с истинной молекулярной массой необходимо удвоить индексы в формуле. Следовательно, молекулярная формула вещества: C2H6 .

Определение формулы вещества зависит от точности математических вычислений.

При нахождении значения n элемента следует учитывать хотя бы два знака после запятой и аккуратно производить округление чисел.

Например, 0,8878 ≈ 0,89, но не 1. Соотношение атомов в молекуле не всегда определяется простым делением полученных чисел на меньшее число.

по массовым долям элементов.

Задача 1. Установите формулу вещества, которое состоит из углерода (w=25%) и алюминия (w=75%).

Разделим 2,08 на 2. Полученное число 1,04 не укладывается целое число раз в числе 2,78 (2,78:1,04=2,67:1).

Теперь разделим 2,08 на 3.

При этом получается число 0,69, которое укладывается ровно 4 раза в числе 2,78 и 3 раза в числе 2,08.

Следовательно, индексы x и y в формуле вещества AlxCy равны 4 и 3, соответственно.

Ответ: Al4C3 (карбид алюминия).

Алгоритм нахождения химической формулы вещества

по его плотности и массовым долям элементов.

Более сложным вариантом задач на вывод формул соединений является случай, когда состав вещества задается через продукты сгорания этих.

Задача 2. При сжигании углеводорода массой 8,316 г образовалось 26,4 г CO2. Плотность вещества при нормальных условиях равна 1,875 г/мл. Найдите его молекулярную формулу.

Общие сведения об углеводородах.

(продолжение)

https://pandia.ru/text/78/431/images/image025_32.gif" width="696" height="983">

Природные источники углеводородов.

Нефть – ископаемое, жидкое горючее, сложная смесь органических веществ: предельных углеводородов, парафинов, нафтенов, ароматических и др. В состав нефти обычно входят кислород-, серо - и азотсодержащие вещества.

Маслянистая жидкость с характерным запахом, темного цвета, легче воды. Важнейший источник топлива, смазочных масел и др. нефтепродуктов. Основной (первичный) процесс переработки - перегонка, в результате которой получают бензин, лигроин, керосин, соляровые масла, мазут, вазелин , парафин, гудрон. Вторичные процессы переработки (крекинг, пиролиз ) позволяют получать дополнительное жидкое топливо, ароматические углеводороды (бензол, толуол и пр.) и др.

Нефтяные газы – смесь различных газообразных углеводородов, растворенных в нефти; они выделяются в процессе добычи и переработки. Применяются как топливо и химическое сырье.

Бензин – бесцветная или желтоватая жидкость, состоит из смеси углеводородов (С5 – С11 ). Применяется как моторное топливо, растворитель и др.

Лигроин – прозрачная желтоватая жидкость, смесь жидких углеводородов. Применяется как дизельное горючее, растворитель, гидравлическая жидкость и др.

Керосин – прозрачная, бесцветная или желтоватая жидкость с голубым отливом. Применяют как топливо для реактивных двигателей, для бытовых нужд и др.

Соляр – желтоватая жидкость. Применяется для производства смазочных масел.

Мазут – тяжелое нефтяное топливо, смесь парафинов. Применяют в производстве масел, топочных мазутов, битума , для переработки на легкое моторное топливо.

Бензол – бесцветная подвижная жидкость с характерным запахом. Применяют для синтеза органических соединений, как сырье для получения пластмасс, как растворитель, для производства взрывчатых веществ, в анилинокрасочной промышленности

Толуол – аналог бензола. Применяют в производстве капролактама, ВВ, бензойной кислоты, сахарина, как растворитель, в анилинокрасочной промышленности и др.

Смазочные масла – Применяют в различных областях техники для уменьшения трения мех. частей, для защиты металлов от коррозии, как смазочноохлаждающую жидкость.

Гудрон – черная смолистая масса. Применяется для смазки и др.

Вазелин – смесь минерального масла и парафинов. Применяют в электротехнике , для смазки подшипников, для защиты металлов от коррозии и др.

Парафин – смесь твердых насыщенных углеводородов. Применяют как электроизолятор, в хим. промышленности - для получения высших кислот и спиртов и др.

Пластмасса – материалы на основе высокомолекулярных соединении. Применяют для производства различных технических изделий и предметов быта.

Асфальтовая руда – смесь окисленных углеводородов. Применяется для изготовления лаков, в электротехнике, для асфальтирования улиц.

Горный воск – минерал из группы нефтяных битумов. Применяют как электроизолятор, для приготовления различных смазок и мазей и др.

Искусственный воск – очищенный горный воск.

Каменный уголь – твердое горючее ископаемое растительного происхождения черного или черно-серого цвета. Содержит 75–97% углерода. Применяют как топливо и как сырье для химической промышленности .

Кокс – спекшийся твердый продукт, образующийся при нагревании некоторых углей в коксовых печах до 900–1050° С. Применяется в доменных печах.

Коксовый газ – газообразные продукты коксования ископаемых углей. Состоит из СН4, Н2, СО и др., содержит также негорючие примеси. Используется как высококалорийное топливо.

Аммиачная вода – жидкий продукт сухой перегонки каменного угля. Применяется для получения солей аммония (азотные удобрения), нашатырного спирта и др.

Смола каменноугольная – густая темная жидкость с характерным запахом, продукт сухой перегонки каменного угля. Применяется как сырье для хим. промышленности.

Бензол – бесцветная подвижная жидкость с характерным запахом, один из продуктов каменноугольной смолы. Применяют для синтеза органических соединений, как ВВ, как сырье для получения пластмасс, как краситель, как растворитель и др.

Нафталин – твердое кристаллическое вещество с характерным запахом, один из продуктов каменноугольной смолы. Производные нафталина применяют для получения красителей и взрывчатых веществ и др.

Лекарства - коксохимическая промышленность дает целый ряд лекарственных препаратов (карболовая кислота, фенацитин, салициловая кислота, сахарин и др.).

Пек – твердая (вязкая) масса черного цвета, остаток от перегонки каменноугольной смолы. Применяют как гидроизолятор, для производства топливных брикетов и др.

Толуол – аналог бензола, один из продуктов каменноугольной смолы. Применяют для производства ВВ, капролактама, бензойной кислоты, сахарина, как краситель и др.

Красители – одни из продуктов коксохимического производства, получаются в результате переработки бензола, нафталина и фенола. Применяют в народном хозяйстве.

Анилин – бесцветная маслянистая жидкость, ядовит. Применяется для получения различных органических веществ, анилиновых красок, различных азокрасителей, синтеза лекаре венных препаратов и др.

Сахарин – твердое белое кристаллическое вещество сладкого вкуса, получается из толуола. Применяется вместо сахара при заболевании диабетом и др.

ВВ – производные каменного угля, получаемые в процессе сухой перегонки. Применяются в военной промышленности, горном деле и других отраслях народного хозяйства.

Фенол – кристаллическое вещество белого или розового цвета с характерным сильным запахом. Применяется в производстве фенолформальдегидных пластмасс, синтетического волокна капрона, красителей, лекарственных препаратов и др.

Пластмасса – материалы на основе высокомолекулярных соединений. Применяют для производства различных технических изделий и предметов быта.

Органическая химия
Понятие органической химии и причины её выделения в самостоятельную дисциплину

Изомеры – вещества одинакового качественного и количественного состава (т.е. имеющие одинаковую суммарную формулу), но разного строения, следовательно, различными физическими и химическими свойствами.

Фенантрен (справа) и антрацен (слева) - структурные изомеры.

Краткий очерк развития органической химии

Первый период развития органической химии, называемый эмпирическим (с середины XVII до конца XVIIIвека), охватывает большой промежуток времени от первоначального знакомства человека с органическими веществами до возникновения органической химии как науки. В этот период познание органических веществ, способов их выделения и переработки происходило опытным путем. По определению знаменитого шведского химика И. Берцелиуса, органическая химия этого периода была «химией растительных и животных веществ». К концу эмпирического периода были известны многие органические соединения. Из растений были выделены лимонная, щавелевая, яблочная, галловая, молочная кислоты, из мочи человека – мочевина, из мочи лошади – гиппуровая кислота. Обилие органических веществ послужило стимулом для углубленного изучения их состава и свойств.
Следующий период, аналитический (конец XVIII - середина XIX века), связан с появлением методов установления состава органических веществ. Важнейшую роль в этом сыграл открытый М. В. Ломоносовым и А. Лавуазье закон сохранения массы (1748), положенный в основу количественных методов химического анализа.
Именно в этот период было установлено, что все органические соединения содержат углерод. Кроме углерода, в составе органических соединений были обнаружены такие элементы, как водород, азот, сера, кислород, фосфор, которые в настоящее время называют элементами-органогенами. Стало ясно, что органические соединения отличаются от неорганических прежде всего по составу. К органическим со­единениям существовал тогда особое отношение: их продолжали счи­тать продуктами жизнедеятельности растительных или животных организмов, которые можно получить только с участием нематериальной «жизненной силы». Эти идеалистические воззрения были опровергнуты практикой. В 1828 г. немецкий химик Ф. Велер синтезировал органическое соединение мочевину из неорганического цианата аммония.
С момента исторического опыта Ф. Велера начинается бурное развитие органического синтеза. И. Н. Зинин восстановлением нитробензола получил , положив тем самым начало анилинокрасочной промышленности (1842). А. Кольбе синтезировал (1845). М, Бертло – вещества типа жиров (1854). А. М. Бутлеров – первое сахаристое вещество (1861). В наши дни органический синтез составляет основу многих отраслей промышленности.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX - начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был великий русский химик А. М. Бутлеров. Основные положения теории строения имели большое значение не только для своего времени, но служат научной платформой и для современной органической химии.
В начале XX века органическая химия вступила в современный период развития. В настоящее время в органической химии для объяснения ряда сложных явлений используются квантово-механические представления; химический эксперимент все больше сочетается с использованием физических методов; возросла роль различных расчетных методов. Органическая химия превратилась в такую обширную область знаний, что от нее отделяются новые дисциплины – биоорганическая химия, химия элементоорганических соединений и др.

Теория химического строения органических соединений А. М. Бутлерова

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова:

  1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: - смотрите .
  2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
    Данное положение теории строения органических веществ объяснило явление , широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.
  3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).
  5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

Из всего многообразия химических соединений большая часть (свыше четырех миллионов) содержит углерод. Почти все они относятся к органическим веществам. Органические соединения встречаются в природе, например углеводы, белки, витамины, они играют важную роль в жизнедеятельности животных и растений. Многие органическиё вещества и их смеси (пластмассы, каучук, нефть, природный газ и другие) имеют большое значение для развития народного хозяйства страны.

Химия соединений углерода называется органической химией. Так определил предмет органической химии великий русский химик-органик А.М. Бутлеров. Однако не все соединения углерода принято относить к органическим. Такие простейшие вещества, как оксид углерода (II) СО, диоксид углерода СО2, угольная кислота Н2СО3 и ее соли, например, СаСО3, К2СО3, относят к неорганическим соединениям. В состав органических веществ кроме углерода могут входить и другие элементы. Наиболее часто - это водород, галогены, кислород, азот, сера и фосфор. Существуют также органическиё, вещества, содержащие другие элементы, в том числе металлы.

2. Строение атома углерода (С), структура его электронной оболочки

2.1 Значение атома углерода (С) в химическом строении органических соединений

УГЛЕРОД (лат. Carboneum), С, химический элемент подгруппы IVa периодической системы; атомный номер 6, атомная масса 12,0107, относится к неметаллам. Природный углерод состоит из двух стабильных нук лидов - 12С (98,892% по массе) и 13С (1,108%) и одного нестабильного - С с периодом полураспада 5730 лет.

Распространённость в природе. На долю углерода приходится 0,48% от массы земной коры, в которой он по содержанию занимает среди других элементов 17-е место. Основные углерод-содержащие породы - природные карбонаты (известняки и доломиты); количество углерода в них составляет около 9,610 т.

В свободном состоянии углерод встречается в природе в виде горючих ископаемых, а также в виде минералов - алмаза и графита. Около 1013 т углерода сосредоточено в таких горючих ископаемых, как каменный и бурый уголь, торф, сланцы, битумы, образующих мощные скопления в недрах Земли, а также в природных горючих газах. Алмазы чрезвычайно редки. Даже алмазоносные породы (кимберлиты) содержат не более 9-10 % алмазов массой, как правило, не более 0,4 г. Найденным крупным алмазам обычно присваивают особое название. Самый большой алмаз «Куллинан» весом 621,2 г (3106 карат) был найден в Южной Африке (Трансвааль) в 1905 г., а самый большой русский алмаз «Орлов» весом 37,92 г (190 карат) -в Сибири в середине 17 в.

Чёрно-серый непрозрачный жирный на ощупь с металлическим блеском графит представляет собой скопление плоских полимерных молекул из атомов углерода, непрочно наслоённых друг на друга. При этом атомы внутри слоя связаны между собой сильнее, чем атомы между слоями.

Другое дело алмаз. В его бесцветном, прозрачном и сильно преломляющем свет кристалле каждый атом углерода связан химическими связями с четырьмя такими же атомами, расположенными в вершинах тетраэдра. Все связи одинаковы по длине и очень прочны. Они образуют в пространстве непрерывный трёхмерный каркас. Весь кристалл алмаза представляет собой как бы одну гигантскую полимерную молекулу, не имеющую «слабых» мест, т.к. прочность всех связей одинакова.

Плотность алмаза при 20°С равна 3,51 г/см 3 , графита - 2,26 г/см 3 . Физические свойства алмаза (твёрдость, электропроводность, коэффициент термического расширения) практически одинаковы по всем направлениям; он является самым твёрдым из всех найденных в природе веществ. В графите же эти свойства по разным направлениям - перпендикулярному или параллельному слоям атомов углерода - сильно различаются: при небольших боковых усилиях параллельные слои графита сдвигаются друг относительно друга и он расслаивается на отдельные чешуйки, оставляющие след на бумаге. По электрическим свойствам алмаз - диэлектрик, графит же проводит электрический ток.

Алмаз при нагревании без доступа воздуха выше 1000 °С превращается в графит. Графит при постоянном нагревании в тех же условиях не изменяется вплоть до 3000°С, когда он возгоняется без плавления. Прямой переход графита в алмаз происходит только при температуре выше 3000°С и огромном давлении - около 12 ГПа.

Третья аллотропная модификация углерода -карбин - получена искусственно. Это мелкокристаллический чёрный порошок; в его структуре длинные цепочки атомов углерода расположены параллельно друг другу. Каждая цепочка имеет строение (-С=С) Л или (=С=С=) Л. Плотность карбина средняя между графитом и алмазом -2,68-3,30 г/см 3 . Одна из важнейших особенностей карбина - его совместимость с тканями человеческого организма, что позволяет применять его, например, при изготовлении не-отторгаемых организмом искусственных кровеносных сосудов (рис. 1).

Название своё фуллерены получили не в честь химика, а по имени американского архитектора Р. Фуллера, который предложил строить ангары и другие сооружения в виде куполов, поверхность которых образуют пяти- и шестиугольники (такой купол построен, например, московском парке «Сокольники»).

Для углерода характерно также состояние с неупорядоченной структурой - это т. наз. аморфный углерод (сажа, кокс, древесный уголь) рис. 2. Получение углерода (С):

Большинство окружающих нас веществ - органические соединения. Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 миллионов таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.

Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами. Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы. Большое разнообразие органических соединений связано также с существованием явления изомерии.

Почти все органические соединения содержат также водород, часто в их состав входят атомы кислорода, азота, реже - серы, фосфора, галогенов. Соединения, содержащие атомы любых элементов (за исключением О, N, S и галогенов), непосредственно связанные с углеродом, объединены под названием элементоорганические соединения; основную группу таких соединений составляют металлоорганические соединения (рис. 3).



Огромное число органических соединений требует их четкой классификации. Основу органического соединения составляет скелет молекулы. Скелет может иметь открытую (незамкнутую) структуру, тогда соединение называют ациклическим (алифатическим; алифатические соединения называют также соединениями жирного ряда, т.к. они впервые были выделены из жиров), и замкнутую структуру, тогда его называют циклическим. Скелет может быть углеродным (состоять только из атомов углерода) либо содержать другие, отличные от углерода атомы - т. наз. гетероатомы, чаще всего кислород, азот и серу. Циклические соединения подразделяют на карбоцикличе-ские (углеродные), которые могут быть ароматическими и алициклическими (содержащими один или несколько циклов), и гетероциклические.

Атомы водорода и галогенов в скелет не входят, а гетероатомы входят в скелет лишь в том случае, если они имеют, по меньшей мере, две связи с углеродом. Так, в этиловом спирте СН3СН2ОН атом кислорода не включён в скелет молекулы, а в диметиловом эфире СН3ОСН3 включён в него.

Кроме того, ациклический скелет может быть неразветвлённым (все атомы расположены в один ряд) и разветвлённым. Иногда неразветвлённый скелет называют линейным, однако следует помнить, что структурные формулы, которыми мы чаще всего пользуемся, передают лишь порядок связи, а не реальное расположение атомов. Так, «линейная» углеродная цепь имеет зигзагообразную форму и может закручиваться в пространстве различными способами.

В скелете молекулы различают четыре типа атомов углерода. Принято атом углерода называть первичным, если он образует только одну связь с другим атомом углерода. Вторичный атом связан с двумя другими атомами углерода, третичный - с тремя, а четвертичный все свои четыре связи затрачивает на образование связей с атомами углерода.

Следующим классификационным признаком является наличие кратных связей. Органические соединения, содержащие только простые связи, называются насыщенными (предельными). Соединения, содержащие двойные или тройные связи, называются ненасыщенными (непредельными). В их молекулах на один атом углерода приходится меньшее число атомов водорода, чем в предельных. Циклические ненасыщенные углеводороды ряда бензола выделяют в отдельный класс ароматических соединений.

Третьим классификационным признаком является наличие функциональных групп-групп атомов, характерных для данного класса соединений и определяющих его химические свойства. По количеству функциональных групп органические соединения делятся на монофункциональные - содержат одну функциональную группу, полифункциональные - содержат несколько функциональных групп, например глицерин, и гетерофунк-циональные - в одной молекуле несколько различных групп, например аминокислоты.

В зависимости от того, у какого атома углерода находится функциональная группа, соединения делятся на первичные, например этилхлорид СН 3 СН 2 С1, вторичные - изопропилхлорид (СНз)2СНС1 и третичные - бутилхлорид (СН 8) 8 ССl.

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то