Структура молекул днк представляет собой. Днк и гены. Что такое «упаковка» молекулы

План рождения человека готов тогда, когда половые клетки матери и отца сливаются в одно целое. Такое образование называется зиготой или оплодотворённой яйцеклеткой. Сам же план развития организма заключён в молекуле ДНК , находящейся в ядре этой единственной клетки. Именно в ней закодирован цвет волос, рост, форма носа и всё остальное, что делает личность индивидуальной.

Конечно, судьба человека зависит не только от молекулы, но и от многих других факторов. Но гены, заложенные при рождении, тоже во многом влияют на судьбоносный путь. А представляют они собой последовательность нуклеотидов.

При каждой делении клетки ДНК удваивается. Поэтому каждая клетка несёт в себе информацию о строении всего организма. Это как если бы при строительстве кирпичного здания на каждом кирпиче имелся архитектурный план всего сооружения. Посмотрел всего лишь на один кирпич и уже знаешь, частью какой строительной конструкции он является.

Подлинная структура молекулы ДНК была впервые продемонстрирована британским биологом Джоном Гёрдоном в 1962 году. Он брал ядро клетки из кишечника лягушки и с помощью микрохирургической техники пересаживал его в лягушачью икринку. При этом в этой икринке собственное ядро было предварительно убито ультрафиолетовым облучением.

Из гибридной икринки вырастала нормальная лягушка. При этом она была абсолютно идентична той, чьё клеточное ядро было взято. Так было положено начало эре клонирования. А первым успешным результатом клонирования среди млекопитающих стала овечка Долли. Она прожила 6 лет, а затем скончалась.

Впрочем, сама природа тоже создаёт двойников. Случается это тогда, когда после первого деления зиготы две новые клетки не остаются вместе, а расходятся в стороны, и из каждой получается свой организм. Так рождаются однояйцевые близнецы. Их молекулы ДНК абсолютно одинаковые, поэтому близнецы так похожи.

Своим внешним видом ДНК напоминает верёвочную лестницу, завитую в правую спираль. А состоит она из полимерных цепочек, каждая из которых формируется из звеньев 4-х типов: адениновое (А), гуаниновое (Г), тиминовое (Т) и цитозиновое (Ц).

Именно в их последовательности и заключена генетическая программа любого живого организма. На рисунке ниже, для примера, приведён нуклеотид Т. У него верхнее кольцо называется азотистым основанием, пятичленное кольцо внизу представляет собой сахар, а слева находится фосфатная группа.

На рисунке изображён тиминовый нуклеотид, входящий в состав ДНК. Остальные 3 нуклеотида имеют сходное строение, а различаются по азотистому основанию. Правое верхнее кольцо - азотистое основание. Нижнее пятичленное кольцо - сахар. Левая группа РО - фосфат

Размеры молекулы ДНК

Диаметр двойной спирали составляет 2 нм (нм - нанометр, равен 10 -9 метра). Расстояние между соседними парами оснований вдоль спирали составляет 0,34 нм. Полный оборот двойная спираль делает через 10 пар. А вот длина зависит от того организма, которому принадлежит молекула. У простейших вирусов имеется всего лишь несколько тысяч звеньев. У бактерий их несколько миллионов. А у высших организмов их миллиарды.

Если вытянуть в одну линию все ДНК, заключённые в одной клетке человека, то получится нить длиной примерно 2 м. Отсюда видно, что длина нити в миллиарды раз больше её толщины. Чтобы лучше представить себе размеры молекулы ДНК, можно вообразить, что её толщина равна 4 см. Такой нитью, взятой из одной человеческой клетки, можно опоясать земной шар по экватору. В таком масштабе человек будет соответствовать размерам Земли, а ядро клетки вырастит до размеров стадиона.

Верна ли модель Уотсона и Крика?

Рассматривая структуру молекулы ДНК, возникает вопрос, как она, имея такую огромную длину, располагается в ядре. Она должна лежать так, чтобы быть доступной по всей своей длине для РНК-полимеразы, которая считывает нужные гены.

А как осуществляется репликация? Ведь после удвоения две комплементарные цепи должны разойтись. Это довольно сложно, так как цепи первоначально закручены в спираль.

Такие вопросы изначально породили сомнения в верности модели Уотсона и Крика . А данная модель была слишком конкретна и просто дразнила специалистов своей незыблемостью. Поэтому все бросились искать изъяны и противоречия.

Одни специалисты предполагали, что если злополучная молекула состоит из 2-х полимерных цепочек, связанных слабыми нековалентными связями, то они должны расходиться при нагревании раствора, что можно легко проверить экспериментально.

Вторые специалисты заинтересовались азотистыми основаниями, которые образуют друг с другом водородные связи. Это можно проверить, измеряя спектры молекулы в инфракрасной области.

Третьи специалисты думали, что если внутри двойной спирали и впрямь запрятаны азотистые основания, то можно выяснить, действуют ли на молекулу те вещества, которые способны реагировать только с этими запрятанными группами.

Было поставлено множество опытов и к концу 50-х годов XX столетия стало ясно, что предложенная Уотсоном и Криком модель выдерживает все испытания. Попытки её опровержения потерпели неудачу .

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.









Уотсон и Крик показали, что ДНК состоит из двух полинуклеотидных цепей. Каждая цепь закручена в спираль вправо, и обе они свиты вместе, т. е. закручены вправо вокруг одной и той же оси, образуя двойную спираль.

Цепи антипараллельны, т. е. направлены в противоположные стороны. Каждая цепь днк состоит из сахарофосфатного остова, вдоль которого перпендикулярно длинной оси двойной спирали располагаются основания; находящиеся друг против друга основания двух противоположных цепей двойной спирали связаны между собой водородными связями.

Сахарофосфатные остовы двух цепей двойной спирали хорошо видны на пространственной модели ДНК. Расстояние между сахарофосфатными остовами двух цепей постоянно и равно расстоянию, занимаемому парой оснований, т. е. одним пурином и одним пиримидином. Два пурина занимали бы слишком много места, а два пиримидина - слишком мало для того,чтобы заполнить промежутки между двумя цепями.

Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой, чем и объясняется обнаруженная на рентгенограммах периодичность. Полный оборот спирали приходится на 3,4 нм, т. е. на 10 пар оснований. Никаких ограничений относительно последовательности нук-леотидов в одной цепи не существует, но в силу правила спаривания оснований эта последовательность в одной цепи определяет собой последовательность нуклеотидов в другой цепи. Поэтому мы говорим, что две цепи двойной спирали комплементарны друг другу.

Уотсон и Крик опубликовали сообщение о своей модели ДНК в журнале « » в 1953 г., а в 1962 г. они вместе с Морисом Уилкинсом были удостоены за эту работу Нобелевской премии. В том же году получили Нобелевскую примию Кендрью и Перуц за свои работы по определению трехмерной структуры белков, также выполненные методом рентгеноструктурного анализа. Розалинду Франклин, умершую от рака ранее присуждения этих премий, не включили в число лауреатов, поскольку Нобелевская премия посмертно не присуждается.


Для того чтобы признать предложенную структуру генетическим материалом, требовалось показать, что она способна: 1) нести в себе закодированную информацию и 2) точно воспроизводиться (реплицироваться). Уотсон и Крик отдавали себе отчет в том, что их модель удовлетворяет этим требованиям. В конце своей первой статьи они сдержанно отметили: «От нашего внимания не ускользнуло, что постулированное нами специфическое спаривание оснований сразу же позволяет постулировать и возможный механизм копирования для генетического материала».

Во второй статье, опубликованной втом же 1953 г., они обсудили выводы, которые следовали из их модели, в генетическом плане. Это открытие, показавшее, сколь явно структура может быть связана с функцией уже на молекулярном уровне, дало мощный толчок развитию молекулярной биологии.

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Молекула ДНК - это полинуклеотид, мономерными единицами которого служат четыре дезоксирибонуклеотида (дАМФ, дГМФ, дЦМФ и дТМФ). Соотношение и нуклеотидов в ДНК разных организмов различны. Кроме главных азотистых оснований в ДНК содержатся и другие дезоксирибонуклеотиды с минорными основаниями: 5-метилцитозин, 5-оксиметилцитозин, 6-метиламинопурин.

После того как появилась возможность использования метода рентгеновской кристаллографии для изучения биологических макромолекул и получения совершенных рентгенограмм, удалось выяснить молекулярную структуру ДНК. Указанный метод основан на том, что пучок параллельных рентгеновских лучей, падающих на кристаллическое скопление атомов, образует дифракционную картину, которая в основном зависит от атомной массы этих атомов, их расположения в пространстве. В 40-х годах прошлого века была выдвинута теория о трехмерной структуре молекулы ДНК. У. Астбюри доказал, что представляет собой стопку из наложенных один на другой плоских нуклеотидов.

Первичная структура молекулы ДНК

Под первичной структурой нуклеиновых кислот подразумевают последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК. Нуклеотиды связываются между собой при помощи фосфодиэфирных связей, которые образуются между ОН-группой в положении 5 дезоксирибозы одного нуклеотида и ОН-группой в положении 3 пентозы другого.

Биологические свойства нуклеиновых кислот определяются качественным соотношением и последовательностью нуклеотидов вдоль полинуклеотидной цепи.

Нуклеотидный состав ДНК у организмов разных специфичен и определяется отношением (Г + Ц)/(А + Т). С помощью коэффициента специфичности была определена степень гетерогенности нуклеотидного состава ДНК у организмов различного происхождения. Так, у высших растений и животных отношение (Г+Ц)/(А+Т) колеблется незначительно и имеет значение больше 1. Для микроорганизмов коэффициент специфичности изменяется в широких пределах — от 0,35 до 2,70. Вместе с тем данного биологического вида содержат ДНК одного и того же нуклеотидного состава, т. е. можно сказать, что по содержанию ГЦ-пар оснований ДНК одного вида идентичны.

Определение гетерогенности нуклеотидного состава ДНК по коэффициенту специфичности еще не дает информации о ее биологических свойствах. Последнее обусловлено различной последовательностью отдельных нуклеотидных участков в полинуклеотидной цепи. Это значит, что генетическая информация в молекулах ДНК закодирована в специфической последовательности ее мономерных единиц.

Молекула ДНК содержит нуклеотидные последовательности, предназначенные для инициации и терминации процессов синтеза синтеза РНК (транскрипция), (трансляция). Имеются нуклеотидные последовательности, которые служат для связывания специфических активирующих и ингибирующих регуляторных молекул, а также нуклеотидные последовательности, не несущие какой-либо генетической информации. Существуют также модифицированные области, которые защищают молекулу от действия нуклеаз.

Проблема нуклеотидной последовательности ДНК до настоящего времени полностью не разрешена. Определение нуклеотидной последовательности нуклеиновых кислот является трудоемкой процедурой, предусматривающей применение метода специфического нуклеазного расщепления молекул на отдельные фрагменты. На сегодняшний день полная нуклеотидная последовательность азотистых оснований установлена для большинства тРНК разного происхождения.

Молекула ДНК: вторичная структура

Уотсон и Крик спроектировали модель двойной спирали Согласно данной модели две полинуклеотидных цепи обвивают друг друга, при этом образуется своеобразная спираль.

Азотистые основания в них расположены внутри структуры, а фосфодиэфирный остов — снаружи.

Молекула ДНК: третичная структура

Линейная ДНК в клетке имеет форму вытянутой молекулы, она упакована в компактную структуру и занимает всего 1/5 объема клетки. Например, длина ДНК хромосомы человека достигает 8 см, а упакована так, что умещается в хромосоме с длиной 5 нм. Подобная укладка возможна благодаря наличию спирализованных структур ДНК. Из этого следует, что двухцепочечная спираль ДНК в пространстве может подвергаться дальнейшей укладке в определенную третичную структуру — суперспираль. Суперспиральная конформация ДНК характерна для хромосом высших организмов. Подобная третичная структура стабилизируется за счет с остатками аминокислот, входящих в состав тех белков, которые образуют нуклеопротеидный комплекс (хроматин). Следовательно, ДНК ассоциирована с белками главным образом основного характера — гистонами, а также кислыми белками и фосфопротеидами.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то