Лекции по физике спо. Учебные материалы по общей физике (1 курс). Потенциал системы точечных зарядов

Лекции по физике В.И.Бабецкого

(II курс факультета "Прикладная математика и физика" МАИ) 1999г.

Электромагнитное взаимодействие

Мир состоит из взаимодействующих частиц. Всё, что мы видим, построено из элементарных частиц, есть такие кирпичики мироздания. На макроскопическом уровне много взаимодействий, на самом деле, в основании всего лежит четыре типа фундаментальных взаимодействий. Они называются:

1) сильное,

2) электромагнитное,

3) слабое,

4) гравитационное.

Они перечислены в порядке убывания силы взаимодействия.

Сильное взаимодействие определяет структуру атомных ядер и более глубокие структуры. Следующее - электромагнитное взаимодействие. Оно послабее на два порядка сильного. Сильное взаимодействие проявляется на малых расстояниях, см, электромагнитное взаимодействие проявляется на любых расстояниях. Далее идёт слабое взаимодействие, вообще, играющее незаметную роль на макроскопическом уровне. И, наконец, самое слабое гравитационное взаимодействие, примерно на сорок порядков слабее электромагнитного. Но почему именно гравитационное взаимодействие мы ощущаем более часто, например, вы хотите подпрыгнуть, а вас тянет вниз. Это происходит за счёт того, что в нём участвуют все частицы.

Эти взаимодействия характерны тем, что в них участвуют определённые частицы, частицы, обладающие определёнными свойствами.

На макроскопическом уровне электромагнитное взаимодействие самое важное, вот то, что мы видим на Земле - это всё электромагнитное взаимодействие.

Электрический заряд

Частицы, участвующие в электромагнитном взаимодействии, обладают специальным свойством - электрическим зарядом . Что такое электрический заряд? Первичное понятие. Нельзя его описать в других более понятных терминах. Электрический заряд - неотъемлемое свойство элементарной частицы. Если есть частица, обладающая электрическим зарядом, например, электрон, всем вам известный электрон, лишить его этого свойства невозможно. Электрон обладает и другими свойствами: массой, спином, магнитным моментом. Имеются частицы и не обладающие этим свойством. Если частица не участвует в электромагнитном взаимодействии (а как это определить? берём частицу, находим действующую на неё силу, есть книжки, в которых дано руководство для дальнейших действий), итак, если частица не участвует в электромагнитном взаимодействии, то она не обладает электрическим зарядом.

Заряды всех тел кратны величине Кл, это заряд электрона. Это означает, что в природе встречается минимальный заряд, равный е . Можно было бы принять е =1, но в силу ряда причин, в частности, по исторической причине, е выражается таким числом.

Есть такие частицы - кварки, заряд которых дробный: , и т.д. То, что их заряд дробный не противоречит тому, что я сказал, так как кварки самостоятельно не наблюдаются. Считается, что нельзя выделить кварки индивидуально, чтобы получить частицу с дробным зарядом. Чтобы было более понятно, я приведу такой пример. Имеем намагниченную спицу с южным и северным полюсом, они ведут себя, как точечные источники тока, но, сломав спицу пополам, на одном конце остаётся южный полюс, а на другом выскакивает северный. Так и при делении кварков, они делятся, но появляются новые кварки, а не их половинки.

Заряды бывают двух знаков: “+” и “–“. Как понимать отрицательный и положительный знак? Можно было бы назвать их другими символами, но которые входят в математические понятия, потому что математика - базовая наука.

Электромагнитное поле

Ещё раз повторю, мир состоит из взаимодействующих частиц, но частицы не взаимодействуют друг с другом. Этот вопрос занимал ещё Ньютона. Он считал, что сама идея взаимодействия через пустое пространство это абсурд. Нынешняя физика так же отвергает взаимодействие через пустое пространство. Например, откуда Земля "знает", что где-то от неё на расстоянии 150 млн. км находится Солнце, к которому она должна притягиваться? Поле является переносчиком взаимодействия, в частности, переносчиком электромагнитных взаимодействий является электромагнитное поле. Что такое поле? опять таки первичное понятие, невозможно его выразить более простыми словами. Надо понимать так: имеем частицу заряженную, одну единственную, и то, что создаёт частица в пространстве, это и есть электромагнитное поле. Некоторые формы этого электромагнитного поля мы видим, свет есть проявление электромагнитного поля. Другая заряженная частица погружена в это поле и взаимодействует с этим полем там, где она находится. Таким образом, решена проблема взаимодействия. Электромагнитное поле - это переносчик электромагнитного взаимодействия.

Опять таки, поле мы не можем описать обычными словами. Вот стол, он деревянный, коричневый и т.д., его можно описать бесконечно большим набором свойств. Электромагнитное поле гораздо более простая вещь. Движение частицы, находящейся в электромагнитном поле, описывается следующим уравнением.

Второй закон Ньютона :

Заряженная частица, обладающая зарядом q , движется в электромагнитном поле согласно этому уравнению. Видим, что сила, действующая на частицу со стороны электромагнитного поля, определяется двумя векторными полями: , то есть в каждой точке пространства задан вектор, который может меняться со временем (математик может сказать, если в каждой точке пространства задана скалярная функция, что задано скалярное поле, если задана векторная функция - задано векторное поле), поле называется напряжённостью электрического поля , поле - индукция магнитного поля . Почему они так называются, нам сейчас неважно, это термины. Почему они разделены? Потому что влияние их на частицу различны. Поле не содержит никаких характеристик частицы кроме заряда. Если v = 0, то второе слагаемое вылетает. Это означает, что магнитное поле действует только на движущиеся частицы. Неподвижные заряды не чувствуют магнитного поля.

Когда говорится о функциях координат, имеется в виду, что мы находимся в некоторой инерциальной системе. Если заряд движется, то в другой инерциальной системе он будет покоиться. Это означает, что, если в одной инерциальной системе отсчёта существует только, то в другой появится и. Вот эти два векторных поля полностью описывают электромагнитное поле. Задать электромагнитное поле означает задать шесть функций от координат и времени.

Как задать поле в этом помещении? Помещаем пробный заряд, измеряем силу, делим на q , получаем. Чуть сложнее измерить. Есть более изящные методы измерения, основанные на этом уравнении. И получим исчерпывающее описание этой вещи. Это описание на много проще описания этого стола.

Уравнения поля

Могу ли я конкретно, физически соорудить поле? Ответ, вообще говоря, нет. Не всякое векторное поле может представлять реальное электрическое поле, и не всякое векторное поле представляет магнитное поле. Реальное электромагнитное поле обладает структурой, и эта структура и выражается полевыми уравнениями, которые выступают в роли фильтров.

Электромагнитное поле создаётся заряженными частицами, или, иначе говоря, заряженные частицы являются источниками электромагнитного поля.

Основная задача теории:

предъявлено распределение заряженных частиц, и мы должны найти поле , которое создаётся этими частицами.

Вопрос: как можно описать распределение частиц, как предъявить распределение зарядов? Кстати, никакие другие свойства кроме заряда не важны. Можно взять какую-то частицу, измерить её заряд и повесить на неё бирку, и так со всеми частицами. Но технически это сделать невозможно.

Вот имеем некоторую систему координат. В точке с радиус-вектором выбираем некоторый элемент объёма DV i , определяем заряд этого элемента объёма. Пусть внутри этого элемента объёма находится заряд Dq i . Теперь определяем такую величину: . Будем уменьшать объём, при этом окажется, что отношение стремится к некоторому пределу. Считается, что элемент объёма очень мал, но число частиц в нём велико, такова реальность.

Определённая выше функция, называется плотностью заряда . Понятно, что всё распределение заряда описывается функцией. Если имеются отдельные точечные заряды, то они подпадают под эту функцию. И она такова, что, если в точке находится точечный заряд, то тогда = . Скалярная функция позволяет полностью описать мир с точки зрения электродинамики. Но не только она, скорость заряда тоже влияет на электромагнитное поле. Так как магнитное поле создаётся движущимися зарядами, нам нужно учесть ещё движение, и для этого нужна ещё одна характеристика. Берём в нашей системе координат точку и вычисляем такую величину: . Формулы надо научиться читать повествовательно! В этом случае: ловите все частицы этого объёма, заряд частицы умножаем на её скорость, делим на объём, а потом переходим к пределу, получаем некоторый вектор и этот вектор приписываем точке, в окрестности которой производили измерения... Получаем векторное поле. - плотность тока . Кстати, в механике аналогичная величина - плотность импульса. Вместо заряда возьмём массу, получим суммарный импульс, если разделить его на объём, получим плотность импульса.

Источники электромагнитного поля полностью характеризуются скалярной функцией и векторной функцией. Вот я уже говорил там о цветочках в саду, птички летают… с точки зрения электродинамики система должна быть описана функциями r и. Действительно, если дать эти функции, то по ним можно было бы дать цветную картинку, кстати, телевизор это и делает, а частью этого электромагнитного поля являются волны, которые попадают вам в глаз. Задание этих функций задаёт поле, потому что, если известны источники, то известно и поле.

Полевые уравнения

Всё электричество сидит в этих уравнениях. Они, на самом деле, симметричны и красивы. Эти уравнения постулируются, они лежат в основе теории. Это фундаментальные уравнения теории. Вот, кстати, интересно. Теория существует неизменно с семидесятых годов XIX века по сей день, и никаких поправок! Ньютоновская теория не выдержала, а электродинамика стоит около 1,5 века, работает на расстоянии м и никаких отклонений.

Для расшифровки этих уравнений потребуются некоторые математические конструкции.

Поток вектора.

Задано некоторое поле , в какой-то точке пространства задан вектор . В окрестности этой точки выбираем площадку dS , площадку ориентированную, её ориентация характеризуется вектором. Тогда конструкция называется поток вектора через площадку dS . При этом площадка настолько мала, что вектор может считаться в пределах этой площадки постоянным.

Теперь ситуация другая. Рассмотрим некоторый кусок поверхности. Эту поверхность разбиваем на элементы. Вот, например, выделенный элемент под номером i , его площадь DS i , его нормаль. Где-то в пределах элемента выбираем вектор, сам элемент задаётся радиус-вектором, то есть какая-то точка внутри элемента имеет радиус-вектор. Сумма по всем элементам поверхности образует такую сумму: , а теперь предел обозначается так: .

Ну, это стандартный опять приём: интеграл есть предел суммы по определению, предел этой суммы называется поток вектора через поверхность S .

Так, если дует ветер, в каждой точке некоторой поверхности определён вектор скорости, тогда поток вектора скорости по этой поверхности - будет объём воздуха, проходящего через поверхность за единицу времени. Если векторное поле не поле скоростей, а нечто другое, то ничего там не течёт. Это есть некий термин, и не надо понимать его буквально.

Если поверхность замкнута, то разобьём её на маленькие элементы. Но берётся ограничение: вектор нормали выбирается наружу (выбор нормали влияет на знак). Если поверхность замкнута, то нормаль берётся наружу, а соответствующий интеграл снабжается кружочком. Это, что касается термина поток.

Если - поле скоростей, то скалярное произведение отрицательно (см. рис.2.2 цифра 1 ), это газ или воздух, втекающий в поверхность. А берём площадку 2 , здесь поток положительный, это воздух, вытекающий из поверхности. Если мы вычислим такую штуку для потока скорости ветра через замкнутую поверхность, (это будет разность воздуха втекающего и вытекающего) и, если течение стационарное, то есть скорость со временем не меняется, то такой интеграл будет равен нулю, хотя и не всегда.

Если взять, то такая штука означает, что масса втекающего воздуха равна массе вытекающего.

Циркуляция потока.

Линии, вдоль которых направлено поле, называются силовыми линиями, а для любого векторного поля они носят название интегральных кривых. Рассмотрим некоторую кривую . Последовательно разбиваем кривую на элементы, вот один элемент, я выделяю его, маленький вектор. В пределах этого элемента определяем значение вектора, берём скалярное произведение, получаем число и суммируем по всем элементам . В пределе получаем некоторое число: , которое обозначаем.

Берём замкнутую кривую (интеграл тогда будет снабжён кружочком), задаём произвольно направление, - это некоторое число, зависящее от вектора и , называется циркуляцией вектора по замкнутому контуру .

Если дует ветер, то циркуляция по замкнутому контуру, не всегда правда, равна нулю. А если возьмём вихрь, то циркуляция заведомо не равна нулю.

Статическое электромагнитное поле (электростатика)

В прошлый раз я нарисовал четыре уравнения. Начнём их жевать потихоньку. И сделаем упрощения. Прежде всего, положим. от чего? От всего, то есть ничего со временем не меняется.

Особенность физики в чём состоит? Не в предмете! Все науки имеют свой предмет рассмотрения, биология - наука изучающая жизнь на Земле и т.д. Физика отличается взглядом на мир. С точки зрения электричества он характеризуется двумя векторными полями, кстати, если задать эти штуки, например, дать описание зарядов в этой аудитории, то мы сможем восстановить всю ту картинку, которую вы сейчас наблюдаете.

Итак, . И второе.

В каждой точке пространства ничего не меняется, и все заряды неподвижны, то есть все заряды прибиты просто гвоздями. Тогда уравнения принимают вид:

Вот при такой подстановке и наши четыре фундаментальные уравнения принимают такой вид.

Третье уравнение означает, что поток вектора через любую замкнутую поверхность равен нулю, четвёртое - циркуляция вектора по любому замкнутому контуру равна нолю. Из этих двух уравнений следует, что. Это не очевидно, но мы ещё до этого доберёмся. Магнитное поле отсутствует. В статическом электромагнитном поле отсутствует магнитное поле, а электрическое описывается двумя уравнениями. В этих уравнениях сидят все свойства электростатического поля, то есть ничего больше не надо. И мы эти свойства сейчас извлечём.

Общие свойства электростатического поля

Прежде всего, что означают эти уравнения? Первое уравнение утверждает, что, если мы возьмём некоторую замкнутую поверхность S, V - объём этой поверхности, разбиваем поверхность на элементы, определяем в пределах каждого элемента напряжённость поля и вычисляем такую вещь, суммируем, никто нам не запрещает это сделать, это математическая вещь, физика сидит в равенстве:

(поток вектора напряжённости через замкнутую поверхность) =

Таким образом, поток вектора через любую замкнутую поверхность равен заряду внутри этой поверхности.

Например, стены, пол, потолок - это замкнутая поверхность. Можем сосчитать поток через эту замкнутую поверхность и получим число, и, если это число отлично от нуля, то это означает, что здесь находится заряд. Электромагнитное взаимодействие очень сильное, и в силу этого мы имеем нейтральное вещество. Ноль получим. Это не означает, что здесь нет электрических полей, но заряда нет.

Берём замкнутый контур, вычисляем циркуляцию. Второе уравнение утверждает, что, какой бы контур мы не взяли, циркуляция равна нулю. Отсюда следует, что силовые линии электромагнитного поля не могут быть замкнутыми. Мы могли бы взять контур, совпадающий с этой линией, скалярное произведение не меняет знак, следовательно, интеграл не равен нулю. Силовые линии не могут быть замкнуты, но тогда что с ними?

Имеется некоторая область, из которой силовые линии выходят, тогда берём замкнутую поверхность S и по этой замкнутой поверхности. Это означает, что q >0.

Если наоборот, силовые линии входят в область, эту область окружаем поверхностью, тогда интеграл отрицательный. Нормаль направлена наружу, в первом случае произведение положительно, а здесь отрицательно.

Можно сказать, что силовые линии электростатического поля начинаются на положительных зарядах и заканчиваются на отрицательных или уходят в бесконечность, но не может быть так, чтобы линия замкнулась на себя. Для магнитного поля, мы увидим дальше, что силовые линии всегда замкнуты, в отличие от электростатических, которые никогда не замкнуты.

Потенциал

Вот такое математическое утверждение: .

Вы, вот, словами должны читать сами формулы. Кстати, физику можно излагать без слов, так же, как математику. Из того, что циркуляция для любого контура равна нулю, следует, что векторное поле может быть выражено через некоторую функцию от, называемую градиентом скалярного поля: . Любому скалярному полю j можно поставить в соответствие векторное поле вот по такому рецепту. Это векторное поле называется градиентом скалярного поля j .

Смысл векторного поля. - это вектор, направление вектора это направление, в котором функция j меняется наиболее быстро. Направление вектора это направление быстрейшего изменения функции j , а величина вектора характеризует скорость изменения функции j в этом направлении. Ну, скорость по отношению к пространственному перемещению.

Температура, заведомо скалярная величина. В данной точке сунули термометр, он что-то показал, сунули в другую, он покажет другую температуру. А теперь, градиент от этого скалярного поля. Температура в данной точке такая, сместились в эту сторону на метр - другая температура, и так во все стороны, где температура выше, туда будет направлен её градиент, а величина этого вектора.

Другой пример - плотность. Имеем стационарную атмосферу. Направление градиента плотности воздуха будет по вертикали и именно сверху вниз (вниз плотность будет возрастать).

Вот смысл градиента.

Это следствие чисто математическое, это можно доказать. Что физически означает уравнение? Какую физическую интерпретацию можем ему дать?

Рассмотрим некоторую кривую с направлением. Вот имеем электрическое поле:

Возьмём точечный заряд q и будем перемещать заряд по заданной кривой из точки (1) в точку (2). Поскольку на заряд действует сила со стороны электрического поля, работа электрического поля при перемещении заряда вдоль кривой равна: . Работа, которая совершается электрическим полем при перемещении заряда, если я взял и принёс заряд из точки (1) в точку (2), а потом принёс его обратно (контур замкнулся!). То тогда следует, что.

Работа по перемещению заряда по замкнутому контуру равна нулю.

Это означает другое: что работа по перемещению заряда из точки (1) в точку (2) не зависит от пути перемещения .

Это, может быть, не очень очевидно. Вот я перешёл по некоторому пути из (1) в (2), поле совершило некоторую работу, кстати, эта работа положительна. Положу рельсы из точки (1) в точку (2). Поставлю на них вагончик от игрушечной железной дороги, помещу в вагончик заряд, и этот вагончик поедет, (избыток кинетической энергии перейдёт во внутреннюю). В точке (2) перевожу стрелки и пускаю вагончик по другому пути. Так вагончик будет ездить, к нему можно приделать вертушку... но известно, что циркуляция ноль, и построить вечного двигателя нельзя.

А теперь мы имеем такой математический результат: . Электростатическое поле – это градиентное поле. Эта скалярная функция, градиентом которой является напряжённость электрического поля, называется потенциалом электрического поля.

Не всякое векторное поле можно получить как градиент потенциала. Электростатическое поле представляется одной скалярной функцией координат, а не тремя, как можно было бы думать по его векторному характеру. Задать одну функцию координат – и получим картину электрического поля.

Какой физический смысл этого скалярного поля?

А теперь займёмся тем, что у нас стоит под интегралом. , вектор - это есть: , а вся подынтегральная конструкция есть полный дифференциал.

Тогда, возвращаясь к формуле (*), мы пишем:

Мы придём из точки (1) в точку (2), суммируя изменение потенциала. Мораль такая: вот у нас начальная точка, заряд переносим в точку, здесь значение потенциала j (), и работа равна. Работа по перемещению заряда из одной точки в другую равна величине заряда, умноженной на разность потенциалов.

Теперь мы имеем два описания электростатического поля. Либо мы задаём напряжённость , либо мы задаём в каждой точке потенциал j . Слова «разность потенциалов» вы должны понимать буквально – это разность. Вот синоним разности потенциалов, который употребляется в электротехнике, - напряжение. Это означает, что многие из вас склонные употреблять слова «напряжение в цепи» не знали их значения. Это синоним разности потенциалов.

Что означают слова, что напряжение городской сети 220 вольт? Вот есть две дырки (разность потенциалов между дырками 220V), если вы вырвете заряд из одной и будете с ним ходить, а потом вернёте его в другую дырку, то работа поля будет равна V. Нагляднее пример с аккумулятором: вы взяли металлический шарик с клеммы аккумулятора, положили его в карман, ходили где-то с ним и потом приложили его ко второй клемме, то работа будет такая: V.

Там, где у нас было напряжение и разность потенциалов, добавьте такую формулу: .

Вот точка, вот точка, эта кривая, и смысл такой: вот эта формула – универсальный железный рецепт для нахождения разности потенциалов. Если вы когда-нибудь сталкиваетесь с требованием или потребностью найти разность потенциалов между двумя точками, значит, рука должна автоматически писать эту формулу, а когда мы её напишем, потом можно думать. Слова «разность потенциалов» должны просто рефлекторно вызывать вот эту формулу.

О чём речь? В чём рецепт? Если вам надо найти разность потенциалов между одной точкой и другой, когда напряжённость поля во всём пространстве задана (вектор напряжённости поля), рецепт: соедините точку 1 с точкой 2 кривой и вычислите вот такой интеграл. Результат не зависит от выбора пути, ну, и поэтому его можно всегда выбирать наиболее разумным способом.

Ну, к примеру, что значит разумная выборка ? Вот допустим у вас силовые линии поля вот такие радиальные кривые:

И вам надо найти потенциал вот точка 1 ну, а, допустим, вот точка 2. Как выбрать кривую, идущую из 1 в 2? Первая мысль, конечно, взять её вот так: провести по линейке, по ней вычислять. Мысль, конечно, быстрая, но не очень правильная, потому что во всех точках этой кривой вектор переменный и направлен ещё под углом к прямой, и угол ещё меняется – взять интеграл сложно. Зато, через точку 2 проведёте сферу и путь такой: вдоль радиуса – раз, и потом вот по этой дуге – два. Вот разумный выбор кривой. Почему? Потому что вот на этой ветке вектор всюду параллелен прямой, интеграл немедленно сводится просто к обыкновенному интегралу, а вот на этой ветке вектор всюду перпендикулярен кривой, и она никакого вклада не делает. Вот разумный выбор кривой для нахождения разности потенциалов.

Ну, это в качестве примера. Если представлять себе конкретный вид поля, то такая кривая легко находиться, учитывая, что у вас поля произвольной конфигурации, сложной, не будут попадаться, ну, вот здесь у нас в процессе занятия электродинамикой. Ну, конечно, если задано какое-нибудь такое, очень произвольное, поле, то там нет возможности выбирать кривую специальным образом, ну и тогда надо там линейку приложить, но это математическая проблема, можно посчитать. Так, ладно, всё. Следующий пункт.

Поля, создаваемые распределениями зарядов с хорошей симметрией

Ну и сразу такое определение: при достаточно хорошей симметрии напряжённость поля может быть найдена из уравнения. Значит, при достаточно хорошей симметрии поле всегда может быть найдено вот из этой интегральной теоремы. Ну, у нас это первое уравнение Максвелла. А теперь частные случаи.

1) Центральная (сферическая) симметрия. Пусть плотность заряда есть. Значит, плотность, которая, вообще, функция координат точки, зависит только от, то есть только от расстояния до начала координат, это означает, что начало координат – центр симметрии. Вот эта формулка = означает, что плотность на любой сфере радиуса r – константа, какая-то там плотность, ну, и отличная от нуля, на любой сфере она постоянна. Это означает, что распределение обладает сферической симметрией, и создаваемое им поле будет также обладать сферической симметрией. Отсюда следует, что (потенциал как функция точки) это есть. Отсюда эквипотенциальные поверхности – сферы с центром в начале координат , то есть вот на любой сфере потенциал – константа. Отсюда далее следует, что силовые линии поля, которые являются всегда ортогональными к эквипотенциальным поверхностям, силовые линии поля – вот такие радиальные лучи:

Конструкция электрического поля может быть только такая. А теперь заметьте, здесь никакой специфики электричества не было, все эти выводы получены только из соображений симметрии. Любое векторное поле имело бы такую структуру, какая бы физическая природа у него ни была. Только сила соображения симметрии очень часто позволяет делать выводы безотносительно к конкретному предмету разговора.

Отсюда дальше следует, что напряжённость поля на любой сфере может быть представлен так: . Вот это, радиус-вектор, делённый на собственный модуль, есть единичный вектор в направлении радиус-вектора. Всё. Пишем дальше эту формулу. В качестве замкнутой поверхности, которая фигурирует в интеграле (поток вычисляется по замкнутой поверхности), выбираем сферу. Мы её (поверхность) можем брать любой, равенство от этого не зависит, но удобно взять. Пишем: . Это равенство вследствие того, что, - единичный вектор в направлении радиус-вектора (это вектор нормали к сфере, но нормаль к сфере в данной точке совпадает по направлению с радиус-вектором данной точки, эти векторы параллельны), а проекция радиус-вектора на самого себя – это его модуль, конечно, . Дальше, во всех точках сферы одно и тоже, выносим за знак интеграла: (вот это всё была математика, она к физике никакого отношения пока не имела, а физика – это следующее равенство), эта величина должна равняться интегралу от плотности заряда по объёму сферы, по которой вычисляется поток (интеграл от плотности по объёму это есть полный заряд внутри сферы): , где – заряд внутри сферы радиуса. И это утверждение верно для сферы любого радиуса. Отсюда вывод – при центральной симметрии напряжённость поля во всех точках сферы радиуса равна:

где - единичный вектор нормали к сфере. Эта формула, одна единственная, добивает все задачи центральной симметрии. Проблема одна – найти заряд, который находится внутри данной сферы, ну, это не очень тяжёлая проблема.

Можем немножко продолжить это дело. Вследствие того, что на любой сфере, интеграл по объёму можно свести, в принципе, к однократному интегралу, интегрируя по шаровым слоям, ну, напишу тут без подробных комментариев. Вот это объём шарового слоя радиуса толщиной. Почему я тут штрихи поставил, понятно. стоит в верхнем пределе интеграла, ну тогда, чтоб не путать переменную интегрирования с верхним пределом, там я вместо пишу. Значит, если вот эта функция предъявлена, то такой интеграл вычисляется. Так, всё, с центральной симметрией конец. Второй случай.

2) Цилиндрическая симметрия. Вводим цилиндрические координаты, переходит в. Вот у нас в цилиндрических координатах плотность есть только функция от, то есть не зависит от и не зависит от. Это означает, что имеется бесконечный цилиндр, и на поверхности цилиндра любого радиуса плотность заряда постоянна, и всё это дело продолжается до бесконечности по, вот такая ситуация. Сразу, конечно ясно, что физически это не реализуется, но в качестве некоторой идеализации это разумно. Напишем снова, значит, эквипотенциальные поверхности – это цилиндры с осью, совпадающей с осью симметрии, то есть с осью. А силовые линии лежат в плоскостях ортогональных оси. Так. В качестве замкнутой поверхности выбираем цилиндрическую поверхность радиуса и высотой, цилиндрическая поверхность, закрытая двумя крышками для того, чтобы она была замкнутой. Нормаль всегда берётся наружу. Из соображений симметрии ясно (напряжённость поля в любой точке цилиндрической поверхности направлена вдоль вектора, а величина зависит только от расстояния до оси симметрии). Поскольку у нас поверхность теперь задана в виде нескольких кусков, интеграл представится как сумма интегралов по этим кускам: .

Интеграл по крышкам равен нулю, потому что вектор скользит по крышкам, скалярное произведение с нормалью – ноль. .

Внутренняя начинка этого цилиндра, это интеграл по. , где - это заряд на единицу длины цилиндра радиуса, то есть это заряд лепёшки радиуса единичной толщины. Отсюда мы получаем результат:

напряжённость поля во всех точках цилиндрической поверхности радиуса.

Эта формула убивает все проблемы, связанные с цилиндрической симметрией. И, наконец, третий пункт.


3) Поле, создаваемое равномерно заряженной плоскостью. Вот мы имеем плоскость YZ , заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью s . s называется поверхностная плотность заряда . Если взять элемент поверхности, то в нём будет заряд. Значит, симметрия такова, что при сдвигах вдоль y и z ничего не меняется, это означает, что производные по y и z от чего угодно должны равняться нулю: . Это означает, что потенциал есть функция x только: . Вот такое следствие. Это означает, что любая плоскость ортогональная оси x является эквипотенциальной поверхностью. На любой такой плоскости j =const . Силовые линии ортогональны этим плоскостям, значит силовые линии – прямые параллельные оси x . Из соображений симметрии следует, что, если здесь они идут вправо от плоскости, то слева они должны идти влево от плоскости (ожидается, что имеется зеркальная симметрия).

Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.

Пусть – единичный вектор вдоль оси x . В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.

Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра. Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии - функция расстояния до плоскости, тогда мы напишем так: . Тогда мы имеем: , а это заряд, который сидит внутри нашей поверхности.

Отсюда получается: . Что мы видим, что длина цилиндра, ну, расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:

Эта формула автоматически учитывает и знак заряда: если. Вот эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.

Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как, для цилиндра – как и для плоскости вообще не убывает.

Два последние случая практически нереализуемые. Тогда какой смысл в этих формулах? Такой: например, эта формула справедлива вблизи середины плоского заряженного куска. Строго такая формула (однородное поле заполняет всё пространство) ни в какой физической ситуации не реализуется.

Поле, создаваемое произвольным распределением заряда.

Поле точечного заряда.

Пусть имеется один точечный заряд q . Это частный случай сферической симметрии. У нас есть формула: , где – заряд внутри сферы радиуса r , но если заряд точки, то для точечного заряда, при любом r . Понятно почему, на любом радиусе внутри сферы точка остаётся точкой. И для точечного заряда. Это поле точечного заряда. Потенциал поля точечного заряда: .

Поле системы точечных зарядов. Принцип суперпозиции.

Пусть мы имеем систему зарядов, тогда напряжённость поля, создаваемая системой точечных зарядов, в любой точке равна сумме напряжённостей, создаваемых каждым из зарядов. Я мог бы сразу написать, если бы вы свободно читали формулы. Учитесь читать формулы повествовательно. Заряд умножьте на вектор, и разделите на модуль этого вектора, а что такое модуль вектора это длина. Эта вся штука даёт вектор, направленный вдоль вектора.

То, что поля складываются это совершенно не очевидно. Это следствие линейности уравнений Максвелла. Уравнения линейны по. Это означает, что, если вы нашли два решения, то они складываются. Бывают ли поля, для которых не выполняется принцип суперпозиции? Бывают. Гравитационное поле не в ньютоновской теории, а в правильной, не удовлетворяет принципу суперпозиции. Земля создаёт в некоторой точке определённую напряжённость. Луна тоже. Поставили Землю и Луну, напряжённость в точке не равна сумме напряжённостей. Уравнение поля не линейно, физически это означат, что гравитационное поле является само себе источником. Так. Всё, конец.

В прошлый раз мы остановились на обсуждении поля, создаваемом системой зарядов. И мы видели, что поля, создаваемые каждым зарядом в отдельности в данной точке, складываются. При этом я подчеркнул, что это не самая очевидная вещь, - это свойство электромагнитного взаимодействия. Физически оно связано с тем, что поле само для себя не является источником, формально это следствие того, что уравнения линейны. Есть примеры физических полей, которые сами для себя являются источником. То есть, если в каком-то объёме это поле есть, так оно создаёт само поле в окружающем пространстве, формально это проявляется в том, что уравнения не линейны. Я там написал формулу для напряжённости, напишем ещё формулу для потенциала.

Потенциал системы точечных зарядов.

Имеется система зарядов и т.д. И тогда для некоторой точки мы напишем такую формулу: . Значит, вот такой рецепт для потенциала. Напряжённость равна сумме напряжённостей, потенциал равен сумме потенциалов.

Замечание. Практически всегда удобнее вычислять потенциал, а не напряжённость, по понятным причинам: напряжённость – это вектор, и векторы надо складывать по правилу сложения векторов, ну, правилу параллелограмма, это занятие, конечно, более скучное, чем складывать числа, потенциал – это скалярная величина. Поэтому, практически всегда, когда мы имеем достаточно плотное распределение заряда, ищем потенциал, напряжённость поля потом находим по формуле: .)

Поле, создаваемое произвольным ограниченным распределением заряда ).

Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.

Вот такая проблема: область занята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле. Что значит полностью охарактеризовать распределение заряда? Возьмём элемент объёма, положение этого элемента задаётся радиус-вектором, в этом элементе сидит заряд. Для того, чтобы найти поле, нам нужно знать заряд каждого элемента объёма, это означает, что нам нужно знать плотность заряда в каждой точке. Вот эта функция предъявлена, она для нашей цели исчерпывающе характеризует распределение заряда, больше ничего знать не надо.

Пусть нас интересует поле в точке. А дальше принцип суперпозиции. Мы можем считать заряд dq , который сидит в этом элементе объёма, точечным). Мы можем написать сразу выражение для потенциала, который создаёт этот элемент в этой точке: , это потенциал, создаваемый элементом в точке. А теперь понятно, что полный потенциал в этой точке мы найдём суммированием по всем элементам. Ну, и напишем эту сумму как интеграл: .)

Этот рецепт срабатывает железно для любого предъявленного распределения заряда, никаких проблем, кроме вычисления интеграла, нет, но компьютер такую сумму посчитает. Напряжённость поля находится: . Когда интеграл вычислен, то напряжённость находится просто дифференцированием.

Поле на большом расстоянии от ограниченного распределения заряда.

Заодно познакомимся со стандартным приёмом получения приближённых решений. Проблема такая опять. Имеем распределение заряда), мы теперь попробуем получить более точную формулу, не так радикально, а, вот, если уйти достаточно далеко, но ещё, когда это распределение не выглядит совсем точечным, хотим получить более точное приближение. Пусть у нас L – характерный линейный размер системы, будем считать, что, это можно оформить иначе: , это в пределах распределения, – это малая величина.

А теперь вот чем займёмся: .

Стандартный приём: когда у вас имеется сумма, в которой одно слагаемое большое, а другие маленькие, то всегда есть смысл вынести большое слагаемое за скобку и получить в сумме единицу плюс какие-то маленькие добавки, которая разлагается в ряд.

Тогда для напряжённости поля получаем:

Поле диполя.

Диполем называется такое распределение заряда, для которого полный заряд равен нулю, однако дипольный момент не равен нулю: . Легко предъявить такое распределение. Пусть мы имеем два одинаковых точечных заряда, но противоположных знаков. . Дипольный момент у нас был определён: . это что означает? заряд в маленьком элементе объёма dq умножается на радиус-вектор и суммируется по всем зарядам, если записать это дело через сумму, то это будет так: . Вот этот интеграл, если представить всё это как совокупность точечных зарядов, изображается вот такой суммой, каждый заряд умножается на свой радиус-вектор и всё складывается.

Между прочим, в механике, если мы брали бы массу частицы, умножали на радиус-вектор и суммировали, чтобы мы получили? Мы получили бы массу системы умноженную на радиус-вектор центра масс. Если начало координат выбрать в центре масс системы, то «дипольный момент – распределение масс» всегда равнялся бы нулю. Электрический заряд имеет разные знаки, здесь ситуация другая.

Значит, дипольный момент для нашей системы равняется: . Дипольный момент двух одинаковых по величине и противоположных по знаку зарядов – это вектор, идущий из отрицательного заряда в положительный, умноженный на заряд.

Теперь найдём электрическое поле. Пусть дипольный момент, вектор, в начале координат ориентирован вдоль оси ОХ , . Вычислим поле в точке (х ,0,0).

Мораль такая: на оси ОХ напряжённость поля убывает как, то есть она обратно пропорциональна кубу расстояния, от точечного заряда – обратно пропорциональна квадрату расстояния. Направление вектора в точке (х ,0,0) задаётся направлением вектора, то есть напряжённость направлен вдоль оси ОХ .

Теперь возьмём точку (0,у ,0). . Это что означает? Что для этого диполя вектор в точке (х ,0,0) такой, а здесь в точке (0,у ,0) вектор - и по величине в два раза меньше, на том же самом расстоянии, х =у .


Электрический диполь, ориентированный таким образом, создаёт поле с такими силовыми линиями:

Вот такую структуру имеет поле диполя.

Многие молекулы обладают дипольным моментом, и с этим связаны свойства вещества, которые мы рассмотрим в следующий раз.

Сила, действующая на ограниченное

распределение заряда во внешнем поле

Проблема такая: имеем поле, имеем какой-то заряд, размазанный по некоторой области, локализованный заряд). Нас интересует, какая сила будет действовать на заряженное тело, ну, или в конечном итоге, как оно будет двигаться, находясь во внешнем электрическом поле.

Вы должны, конечно, представлять, что, если это ограниченное распределение есть точечный заряд, то вы знаете, какая сила на него действует). Наша задача найти силу, действующую на произвольное распределение заряда.

Ну, в общем-то, понятно, как это можно сделать, надо разбить распределение на совокупность точечных зарядов, находить силы, действующие на каждый из этих зарядов, и суммировать потом все силы по всему распределению. Вот такая программа. Ну, как она реализуется, мы сейчас увидим.

На точечный заряд действует сила , где, оказывается, потенциальной энергией заряда в электрическом поле (мы видели в механике, что, если сила представляется как градиент от некоторой скалярной функции, то эта функция интерпретируется как потенциальная энергия), при этом имеет место закон сохранения энергии, при этом заряд движется так: , это называется полной энергией (сумма кинетической и потенциальной энергии). Это для точечного заряда.

Потенциальная энергия ограниченного распределения заряда во внешнем поле.

Пусть имеется распределение заряда, разобьём заряд на малые элементы объёма dV , в этом элементе объёма заряд. - это потенциальная энергия заряда в элементе объёма dV , энергия элементарного заряда. Тогда вся потенциальная энергия этого распределения будет равна.

Это точная формула. Теперь мы займёмся получением приближённой формулы.

Выберем некоторую точку внутри распределения, радиус-вектор этой точки будет, радиус-вектор – это вектор, идущий из выбранной точки в этот элемент объёма, . Тогда потенциал в точке – это ) . Пока написано разложение с точностью до первых производных, дальше там пойдут слагаемые со вторыми производными и так далее, это факт математический.

В основе этого вычисления лежит следующее предположение: будем считать, что потенциал мало меняется в пределах распределения, то есть распределение не слишком велико. Это означает, что второе слагаемое много меньше первого, то есть значение потенциала в некоторой точке внутри такое-то, а добавка к потенциалу, когда мы доходим до края распределения, мала, поэтому далее слагаемые мы выкидываем вообще. Подставим теперь это дело в формулу для потенциальной энергии: ) .

Мы добыли вот такую симпатичную формулу: , где – радиус-вектор, идущий в некоторую точку внутри распределения, это опять разложение по мультиполям.

Что это физически означает? Главный вклад в потенциальную энергию – полный заряд на значение потенциала где-то внутри распределения, поправочное слагаемое, учитывающее дипольный момент распределения (дипольный момент характеризует как там размещены друг относительно друга отрицательные и положительные заряды), и др. характеристики, учитывающие моменты более высоких порядков.

А теперь мы можем найти силу (сила – это градиент потенциальной энергии), пишем: . И окончательно получим такой результат:

Сила, действующая на диполь во внешнем поле

Пусть q =0, но. Тогда сила равняется. Где это в физике может проявиться? Очень многие тела электрически нейтральны, то есть заряда не имеют, но имеют отличный от нуля дипольный момент. Простейший объект такого рода – молекула. Молекула – это такое образование, у которого положительные и отрицательные заряды в сумме дают ноль, но не совпадают в пространстве. Такая система обладает дипольным моментом, на который действует сила.

Кстати, легко понять, почему возникает сила, действующая на диполь. Скажем, поле создаётся положительным зарядом, имеем диполь, систему, состоящую из отрицательного заряда -q и положительного +q . Результирующая сила такая: . Если вы для такой ситуации примените формулу, то увидите, что она даст правильный результат.


Момент силы, действующей на диполь во внешнем поле

Пусть мы имеем однородное электрическое поле и диполь, который изобразим как два точечных заряда. На заряд +q действует сила, на заряд -q – сила. Если поле однородно, то эти силы в сумме дадут ноль, но момент не равен нулю. Две такие силы создают вращающий момент, вектор этого момента направлен перпендикулярно плоскости рисунка. На электрически диполь в однородном поле действует вот такой момент, этот момент сил стремится развернуть диполь так, чтобы его дипольный момент стал параллелен вектору.

Это вот что означает: если поле диполь помещён в электрическое поле, как показано на рисунке 5.5 , то момент будет поворачивать его так, чтобы диполь стал параллельным, а сила будет втягивать его дальше в электрическое поле.

Теперь мы можем понять, как будет вести себя вещество в электростатическом поле.

Вещество в электростатическом поле

С точки зрения электричества, вещество делится на проводники и диэлектрики). Проводники – это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела (например, электроны в металле, ионы в жидкости или газе). Диэлектрики – это тела, в которых нет свободных носителей заряда, то есть нет заряженных частиц, которые могли бы перемещаться в пределах этого диэлектрика. Поведение этих тел в электрическом поле различно, и сейчас мы эти различия рассмотрим.

Диэлектрики в электрическом поле

Диэлектрики – это тела, состоящие из нейтральных молекул. Молекулы бывают полярные (обладающие дипольным моментом) и неполярные (не обладающие дипольным моментом). Диэлектрик, состоящий из полярных молекул, во внешнем поле поляризуется , то есть приобретет дипольный момент за счёт преимущественной ориентации молекулярных диполей в направлении внешнего поля.

Вот имеем кусок диэлектрика, внешнее поле отсутствует. Дипольные моменты молекул ориентированы хаотически, и в среднем дипольный момент любого элемента объёма равен нулю (рис.5.6 ).

Однако, если мы поместим внешнее электрическое поле, появится преимущественная ориентация, все эти дипольные моменты сориентируются примерно так, как показано на рисунке 5.7 . Они не смогут все построиться вдоль поля, потому что хаотическое тепловое движение разрушает структуру, но, по крайней мере, на фоне этого хаоса они будут все стремиться сориентироваться вдоль поля.

Диэлектрик, состоящий из неполярных молекул, также поляризуется , потому что эти молекулы приобретают дипольный момент во внешнем поле.


Однако, если мы внесём эту молекулу во внешнее электрическое поле, то внешнее поле растаскивает положительный и отрицательный заряды, и молекула приобретает дипольный момент.

Поляризация диэлектрика характеризуется вектором. Смысл этого вектора следующий: если мы возьмём элемент объёма dV , то дипольный момент этого объёма будет равен. Значение дипольного момента малого объёма диэлектрика пропорционально объёму элемента, и коэффициентом стоит вектор, короче, – это плотность дипольного момента.

Теперь немного математики. У нас имеется фундаментальное уравнение (первое уравнение Максвелла, которое связывает электрическое поле с зарядом) . Из этого интегрального закона следует дифференциальный такой: , это по теореме Остроградского-Гаусса.

Имеет место такая замечательная математическая теорема для произвольного векторного поля.

Смысл этой теоремы: имеем векторное поле, имеем замкнутую поверхность, вычисляем вектор в каждой точке поверхности, умножаем на нормаль, на площадь маленькой поверхности и суммируем, этот интеграл зависит, конечно, от поведения на поверхности, мы получили число, теперь, векторное поле ведёт себя как-то внутри этой поверхности, в каждой точке внутри вычисляем эту самую дивергенцию, получим число, интегрируем по объёму, получим равенство. Поведение вектора на поверхности, оказывается, связано с начинкой этого объёма. Оставлю вектор на поверхности прежним, а внутри я могу продеформировать это поле, но, как бы там ни деформировалось поле внутри, интеграл не изменится (хотя, в каждой точке дивергенция изменится).

Вот здесь действует такая хитрая связь поведения векторного поля на поверхности и поведения его внутри объёма..

Равенство получается как следствие теоремы Остроградского-Гаусса. Здесь справа стоит плотность заряда, значит, дивергенция напряжённости равна плотности заряда. Поляризация диэлектрика эквивалентна появлению заряда с плотностью . Это не очень очевидно. Если вектор поляризации постоянен, то никакой заряд в объёме не появляется. Вот, если вектор от точки к точке меняется, то это проявляется в том, что в данном элементе объёма появляется некий фиктивный заряд.

С учётом этого дела уравнение перепишется в таком виде, где – это плотность настоящих зарядов, а – плотность связанных зарядов, вот фиктивных зарядов, появляющихся в результате поляризации диэлектрика. Теперь мы это уравнение можем преобразовать. Умножим всё на и величину перенесём влево, мы получим такое уравнение: , где – это плотность настоящих зарядов, или. Вектор называется индукцией электрического поля , и для этой индукции мы получили вот такое замечательное уравнение: .

А от него мы теперь с помощью теоремы Гаусса вернёмся к интегральному уравнению: . Для однородных диэлектриков – линейная функция напряжённости поля (), вообще, для произвольного диэлектрика – это некоторая функция от напряжённости поля (). Пишем тогда, где коэффициент называется диэлектрическая восприимчивость . Значит, этот коэффициент характеризует склонность диэлектрика к поляризации. Возвращаясь к выражению для, мы получим для однородного диэлектрика: . Величина называется диэлектрическая проницаемость среды . Это безразмерная величина, большая единицы. Тогда связь между и:


Пример . Пусть мы имеем заряженный шар с зарядом +Q , помещённый в однородную бесконечную среду с диэлектрической проницаемостью. Какое поле будет существовать внутри этого диэлектрика?

Исходим из уравнения. Окружаем этот заряд сферой радиуса r . Вектор должен быть направлен по радиусу, это следствие сферической симметрии. , отсюда мы получаем: ; .

Мораль: когда мы решали такую проблему для пустоты, напряжённость поля равнялась, когда шар поместили в диэлектрик, напряжённость поля в раз меньше, чем в пустоте. Легко понять, почему это получается. Когда заряд помещают в диэлектрик, то за счёт поляризации диэлектрика заряд +Q обволакивается отрицательным зарядом -q’ , который выступает на поверхности шара.

Результирующий заряд оказывается меньше, чем Q , однако, что существенно, индукция определяется только настоящим зарядом. Заряд, проступающий на диэлектрике, не влияет на индукцию (этот вектор специально так введён). На напряжённость поля влияют все заряды, в том числе и -q’ .

Проводники в электростатическом поле

Проводники – это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Ну, обычно, употребляется слово проводник, то в качестве синонима идёт слово металл, металлы замечательны тем, что в них имеются свободные электроны. Но, на самом деле, понятие проводника шире. Вода, например, является проводником, не сама по себе чистая вода Н 2 О , она состоит из нейтральных молекул, и никаких там свободных частиц нет, но в воде обычно присутствует в растворённом виде соль, то есть йод, и за счёт этого практически вся вода является проводником.

Кстати, уже в связи с тем, что мы в прошлый раз рассматривали, диэлектрики. Диэлектрическая проницаемость воды очень велика по сравнению с вот такой чистой водой, поэтому, вода является очень эффективным растворителем для многих веществ, ну, скажем, для твёрдых тел, которые устроены по ионной схеме. Так, если молекулы скреплены в твёрдом теле за счёт кулоновского взаимодействия (скажем, один атом электрон приобретает, другой теряет, вот эти атомы связаны кулоновскими силами), то такие связи вода разрушает очень эффективно за счёт своей большой диэлектрической проницаемости. Положительный и отрицательный заряды обволакиваются связанными зарядами, и эти связи разрушаются. Вода в этом плане является очень хорошим растворителем.

Вода, вообще, замечательное вещество. Все тела при охлаждении сжимаются, то есть плотность растёт (при охлаждении плотность увеличивается, при нагревании падает). Вот имеется аномальное явление в этом: максимальная плотность воды при +4 О С, при температуре ниже +4 О С плотность опять падает, то есть дальнейшее падение температуры приводит к падению плотности, то есть к расширению воды. Вот это удивительное поведение связано с тем, что вода играет в нашей жизни вот такую выдающуюся роль: во-первых, хороший растворитель для различных минеральных солей, а во-вторых, вот такое аномальное поведение плотности. Если бы этого не было, то, к примеру, в водоёмах, озёрах, реках, жизни не было бы, водоёмы промерзали бы до дна, а так водоёмы не промерзают. Ну, почему промерзают? Верхний слой воды охлаждается и идёт книзу, поскольку у него больше плотность, тёплые слои снизу выталкиваются наверх и охлаждаются снова. И это охлаждение шло бы очень эффективно. На самом деле этого не происходит. Когда температура нижних слоёв +4 О С, они приобретают максимальную плотность и не всплывают. Охлаждение может идти только за счёт теплопроводности, не за счёт перемещения масс, а за счёт теплопроводности. Теплопроводность – медленный процесс, и, скажем, за зиму водоём не успевает промёрзнуть, а, вот, если бы плотность воды не вела себя так, то он бы промерзал до дна и, в конце концов, всё, что там живёт, отдавало бы концы, а так в этой воде +4 О С живёт.

Некоторые утверждения:

1. Напряжённость внутри проводника равна нулю (это в электростатическом поле). По понятной причине. Если бы существовало поле, то на заряд е действовала бы сила равная, и под действием этой силы заряды внутри проводника двигались бы (электроны в металле двигались бы). До каких пор они могут двигаться? Ясно, что вечно двигаться они не могут, ну, скажем, у нас кусок железа лежит, и в нём они двигаются, двигаются и двигаются, железо греется при этом, а вокруг ничего не происходит. Это, конечно, было бы нелепо. А происходит следующее: имеем проводник и включается внешнее электростатическое поле, заряды начинают двигаться, при этом происходит такое перемещение зарядов внутри, что их собственное поле полностью гасит внешнее приложенное поле, на этом процесс останавливается. Это перемещение при обычных мерках практически мгновенно. Значение напряжённости электрического поля внутри проводника равно нулю. Отсюда следствие

2. Потенциал внутри проводника – константа . Ну, очевидно, напряжённость – это градиент потенциала, производная от потенциала, если напряжённость – ноль (это означает, что производная – ноль), сама функция – постоянная. Потенциал во всех точках проводника одинаков. Это утверждение верно для всех точек проводника вплоть до поверхности. Отсюда мораль:

3. Поверхность проводника является эквипотенциальной поверхностью . Ну, и отсюда:

4. Силовые линии поля ортогональны поверхности проводника .


Всё это можно резюмировать такой картинкой:


Скажем, имеем точечный заряд и проводник, внесённый в поле этого заряда. Произойдёт следующее: там, где силовые линии входят, сконцентрируется на поверхности проводника отрицательный заряд, скажем, электроны сюда подойдут, а на противоположной стороне появятся положительные заряды, это не скомпенсированные заряды ионов, из которых построена кристаллическая решётка.

Силовые линии поля будут ортогонально втыкаться в проводник, с другой стороны они будут исходить, опять же ортогонально к поверхности проводника. Ну, и, в общем-то, электрическое поле будет существенно изменено. Мы видим, что, если поверхность проводника будет внесена в поле заряда, вся конфигурация поля будет искажена. Если на проводник посадить заряд (либо снять с него часть электронов, либо насадить), этот заряд будет распределяться так, чтобы напряжённость внутри была равна нулю и чтобы поверхность проводника приняла во всех точках одинаковый потенциал.

Эту вещь полезно иметь в виду, тогда можно качественно представлять себе, как выглядит поле в окрестности заряженного проводника.

Я нарисую произвольный проводник и на него посажу заряд +q , ну, уединённый проводник (больше ничего нет). Какова будет структура поля? Соображения такие: поверхность эквипотенциальная, потенциал меняется непрерывно, значит, соседняя эквипотенциаль будет мало отличаться от этой. Вот, я могу более менее качественно нарисовать систему эквипотенциальных поверхностей. Дальше они будут так выпрямляться, и, в конце концов, на больших расстояниях орбитами будут сферы, как от точечного заряда. А теперь, силовые линии поля ортогональны этим поверхностям…

Вот такой ёж получился. Вот такая картина силовых линий.

Теперь немножко математики.

Мы имеем уравнение. В пустоте, учитывая, что, мы получаем такое уравнение: ). Потенциал электрического поля в пустоте удовлетворяет уравнению, которое называется уравнением Лапласа.

Математически эта проблема сводится к решению такого уравнения при заданных граничных условиях, что на заданной поверхности).

Конденсаторы

Пусть мы имеем отдельный проводник, на который посажен заряд q , этот проводник создаёт поле такой конфигурации, как на рисунке 6.2 . Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника – линейная функция заряда, который на него посажен, увеличите заряд вдвое, потенциал увеличится вдвое. Это не очевидная вещь, и я не могу привести каких-нибудь аргументов на пальцах, чтобы пояснить вот эту зависимость. Получается так, что структура поля не меняется, ну, картина силовых линий не меняется, просто растут напряжённости поля во всех точках пропорционально этому заряду, но общая картина не меняется. Ещё раз повторяю – не очевидная вещь. Ну, ладно, потенциал уединённого проводника – линейная функция заряда, . Пишем тогда, вводя коэффициент пропорциональности вот таким способом, где этот коэффициент пропорциональности С определяется геометрией проводника и называется ёмкостью уединённого проводника ). Ёмкость проводника не является его свойством, то есть на каком-то куске железа нельзя написать «ёмкость такая-то», потому что наличие или отсутствие посторонних тел вблизи меняет эту ёмкость. Его ёмкость, коэффициент пропорциональности, ёмкость отдельного проводника не является свойством этого проводника, она ещё зависит, помимо его, от наличия или отсутствия других тел. Однако, имеются устройства, которые называются конденсаторы, специальные устройства, для которых понятие ёмкости имеет однозначный смысл.

Конденсатором, вообще говоря, называется система из двух проводников, из которых один полностью охватывает другой, то есть, в идеале, конденсатор – вот такая штука:

Если на внутреннем проводнике заряд + q , а на внешнем -q . Внутри возникает электрическое поле вот такой конфигурации (силовые линии ортогональны поверхностям). И никакие внешние заряды не оказывают влияния на это поле, внешние поля не проникают внутрь проводящей полости, то есть от электростатического поля можно заэкранироваться. Хотите жить без электрического поля, вот, залезьте в железную бочку, закройтесь крышкой и всё, оно к вам туда не проникнет, скажем, транзистор у вас там в руках в этой бочке работать не будет, электромагнитные волны туда не будут проникать. Почему, кстати? А потому что внутри проводника поле равно нулю, поскольку напряжённость связана с распределением заряда на поверхности, а начинка проводника уже там не участвует, вы можете выкинуть эту начинку, получить полость, ничего от этого не изменится. Внутри проводника поле определяется только конфигурацией этих проводников и не зависит от внешних зарядов, тогда, если на внутреннем проводнике потенциал, а на внешнем, то мы снова будем иметь такую вещь, что внутренняя энергия пропорциональна заряду: , заряду q , который сидит на картинке внутри проводника. Тогда пишем: . Такое устройство называется конденсатором, и величина С называется ёмкостью конденсатора . Вот это уже свойство устройства, на нём можно написать: «ёмкость С ». Конденсатор – это распространённые элементы в электричестве, в электротехнике и в радиотехнике, и на них прямо написано «ёмкость такая-то», и эта величина уже не зависит от того, что имеется вокруг. По размерности ёмкость что такое? , ёмкость в одну фараду – это ёмкость такого устройства, что, если на него посадить заряд в 1Кл (это колоссальный заряд), то разность потенциалов будет 1В. Нет таких конденсаторов на свете, на Земле просто невозможно построить такой конденсатор, чтобы он имел ёмкость в фараду, поэтому, подходя к этой ёмкости, мы будем использовать микрофарады.

Энергия конденсатора

Условно, два проводника представляют конденсатор. Каким образом можно посадить заряд на эти проводники, ну, зарядить конденсатор? Так, например: берём заряд и переносим с одного проводника на другой, допустим, с одного снимаем несколько электронов и тащим на другой, вот это процесс заряда конденсатора. Как фактически это делается, как можно перетащить электроны с одного проводника на другой? Имеем два проводника, подключается источник, батарейка, ключ замыкается, батарея начинает перегонять заряды с одного проводника на другой. До каких пор нам удастся перегонять их это отдельный вопрос, мы его в своё время рассмотрим, а сейчас просто: внутри этой батареи действуют силы, сторонние силы по отношению к электростатике, и эти силы перегоняют заряды с одного проводника на другой. Ясно, чтобы это разделение произвести, нужно затратить определённую работу. Вот почему: мы сняли электрон, появился положительный заряд, и этот электрон начинает притягиваться к положительному заряду, нам надо совершать работу, чтобы оттащить его от этого заряда. Эту работу можно сосчитать. Пусть мы имеем два проводника, с потенциалами и, мы переносим заряд, при этом совершается работа, равная. Учтём теперь, что разность потенциалов является функцией заряда: , тогда работа, и полная работа будет. Если мы добиваемся того, что на каждом проводнике становится заряд, равный по модулю q , то совершается такая работа. Спрашивается, куда эта работа девается? Запасается в виде энергии конденсатора, и её можно получить обратно. Энергия конденсатора равняется: . Кстати, это поясняет слово конденсатор (накопитель): с одной стороны это накопитель заряда, с другой стороны это накопитель энергии, и в качестве накопителей энергии конденсаторы, действительно, используются. Если конденсатор разряжается, эта энергия освобождается. Кстати конденсаторы большой ёмкости (сооружения порядка этой аудитории) при замыкании разряжаются со страшным громом, это драматический процесс.

Энергия электростатического поля

Проблема такая: заряженный конденсатор обладает энергией, где локализована эта энергия, с чем она связана? Энергия – это интегральная характеристика, просто устройство обладает такой энергией, вопрос, повторяю, стоит в локализации энергии, то есть это энергия чего? Ответ такой: энергия конденсатора – это, на самом деле, энергия электростатического поля, энергия принадлежит полю, ни обкладкам конденсатора, ни заряду. Мы дальше получим чёткую теорему для энергии электромагнитного поля, а сейчас некоторые простые соображения.


Плоский конденсатор . Вот устройство, называемое плоским конденсатором, всем хорошо известное:

Имеется в виду, что расстояние между пластинами много меньше характерного линейного размера, S – площадь пластин. Пластины имеют большую площадь, зазор маленький, в этом случае силовые линии поля однородны и внешние заряды на него не влияют. Напряжённость поля равняется, где. Мы знаем формулу для пластины с поверхностной плотностью: , между пластинами поля складываются, снаружи уничтожаются. Так как поле однородное, разность потенциалов равняется: , где d – расстояние между пластинами. Тогда мы получим, что. Действительно, обнаружили, что разность потенциалов между пластинами – линейная функция заряда, это частное подтверждение общего правила. А коэффициент пропорциональности связан с ёмкостью: . Если объём конденсатора заполнен начинкой из диэлектрика, то будет более общая формула: ).

А теперь займёмся формулой для энергии конденсатора: . Эта формула справедлива всегда. Для плоского конденсатора мы получим: , где V – это объём области между пластинами. При наличии диэлектрика энергия плоского конденсатора равна: . Напряжённость поля внутри плоского конденсатора во всех точках одинакова, энергия пропорциональна объёму, а эта вещь тогда выступает как плотность энергии, энергия, приходящаяся на единицу объёма внутри конденсатора. Повторяю, дальше хорошее доказательство увидим, это пока как наводящее соображение, но положение таково. Электростатическое поле обладает энергией, и, если мы возьмём элемент объёма dV , а внутри этого элемента напряжённость поля равняется Е , то внутри этого объёма будет содержаться энергия, определяемая напряжённостью поля в точке внутри этого элемента. В любом конечном объёме V будет содержаться энергия, равная.

Что это значит? Буквально вот что. Сейчас в этой аудитории имеется электростатическое поле, связанное с тем, что Земля обладает некоторым зарядом, и заряд противоположного знака в атмосфере, это поле однородное, я уже упоминал, наверняка, напряжённость такая: в точках, в которые я сейчас ткнул, разность потенциалов порядка 100В, то есть напряжённость этого поля порядка 100В/м. Значит, в этой аудитории присутствует энергия, вычисленная по этой формуле: , она размазана по всему пространству, энергия принадлежит электрическому полю. Можно ли её использовать? Тут тонкость такая, скажем, я пришёл с чемоданом, поставил тут чемодан, открыл его, потом закрыл, в объёме чемодана есть электрическое поле и, соответственно, энергия. Я взял чемодан и ушёл, унёс ли я эту энергию? Нет, потому что чемодан-то я унёс, а поле как было здесь, так и осталось. Тем не менее, можно ли эту энергию как-нибудь добыть? Да. Надо сделать так, чтобы энергия исчезла в этом объёме, скажем, электрическое поле исчезло в объёме этой аудитории, и тогда эта энергия выделится, если мы уничтожим поле, то энергия выделится.

Процедура, например, такая: вот имеется однородное поле, я беру металлическую пластину и вдвигаю её в это поле перпендикулярно силовым линиям, работа при этом не совершается и ничего не происходит; вдвигаю ещё одну пластину таким же образом, тоже ничего не происходит, ну, правда, внутри проводящей пластины поле исчезает, на поверхности выступают заряды, но это ерунда. А теперь я беру проводничок к одной пластине, ключ и проводничок к другой, тоже невинное дело, ничего при этом не происходит. А когда я замыкаю ключ, что произойдёт? Эти две пластины соединяются, это один проводник, это означает, что их потенциалы должны уравняться. Вначале на одном проводнике был потенциал, на другом, и разность потенциалов равнялась, где d – это расстояние между пластинами, а когда я их соединяю проводником = , как это может быть? Исчезает поле между пластинами, потому что разность потенциалов – это интеграл. Когда я их закорачиваю проводником, получается такая конфигурация:


На сколько этот процесс реализуется? Что такое молния и гром? Имеем землю, имеем облако (это обкладки конденсатора), между ними такое электрическое поле:

Что такое молния? Пробой, это порводничок, он сам собой замыкается. Происходит разряд, исчезает поле между облаком и землёй. Гром, это что такое? Выделение энергии этого поля. Весь этот гром, треск и молния – это выделение энергии между облаком и землёй.

Энергия конденсатора – это. Конечно, чтобы взять этот интеграл, нужно знать всё поле во всём пространстве, и каким же образом получается такая простая формула? Ёмкость, на самом деле, это интегральная характеристика, для того, чтобы найти ёмкость какой-то системы зарядов, нужно знать поле во всём пространстве. Вся трудность вычисления интеграла эквивалентна трудности вычисления ёмкости.

Стационарные магнитные поля

Напомню, как мы добыли электростатику. У нас есть четыре уравнения Максвелла, в которых сидит всё электричество. Мы там положили, получили электростатику. Мы теперь ослабим эти наложенные условия, мы теперь положим, но, получим стационарное магнитное поле. То есть со временем ничего не меняется, но плотность тока, а связано с движением заряда. Заряды двигаются, но стационарно, двигаются так, что в любой точке пространства со временем ничего не меняется. Наглядный пример: течёт река, массы воды движутся, но течение стационарно, скорость воды в каждой точке одна и та же. Когда ветер дует то туда, то сюда порывами, это не стационарное течение, а, если ветер дует без порывов: в ушах свистит и всё, а ничего не меняется со временем, то это пример стационарного течения.

Уравнения электростатики (первое и второе уравнения Максвелла) остаются без изменения, а третье и четвёртое будут иметь вид:

Стационарное означает неменяющееся со временем. Ладно, свойства этого поля мы обсудим в следующий раз.

Мы изучаем стационарное магнитное поле. Напомню исходные положения: , то есть заряды движутся, но стационарно. Это поле будет описываться двумя уравнениями (третьим и четвёртым уравнениями Максвелла):

Что означает третье уравнение ? Что поток вектора через любую замкнутую поверхность равен нулю, где бы эта поверхность ни была взята и какую бы форму она не имела. Это означает, что вклады в поток знакопеременны, то есть где-то вектор направлен внутрь поверхности, а где-то наружу. Формально из равенства 3. можно показать, что, сколько линий выходит из поверхности, столько в неё и входит. Иначе, никакая силовая линия не заканчивается внутри замкнутой поверхности и никакая не начинается. Как это может быть? Это может быть только так: все силовые линии замкнуты. Короче говоря, из третьего уравнения следует, что силовые линии индукции магнитного поля замкнуты . То есть силовая линия может как-то идти, идти, но она обязательно вернётся и укусит себя за хвост.

Для электрического поля мы имели такую вещь: . Слева конструкция такая же, но справа стоял заряд внутри поверхности. Отсюда следствия: 1) силовые линии замкнуты и 2) отсутствуют магнитные заряды, то есть нет таких частиц, из которых выходили бы таким образом (см. рис.7.1 ) линии индукции, такие частицы называются магнитными монополями.


Магнитные монополи отсутствуют. Это специальная проблема физики. Физика вслед за природой, которую она отражает, любит симметрию, и уравнения максвелла обладают симметрией, но ограниченно, в частности, для напряжённости справа стоит сумма зарядов, для магнитной индукции здесь стояла бы сумма магнитных монополей. Вот такое нарушение симметрии раздражает, повторяю, природа любит симметрию. Были попытки лет двадцать назад обнаружить монополи, так кажется, из соображений симметрии должны они быть, но не обнаружили. Теории приходилось искать причины, почему их нет. Соображения симметрии настолько довлеют, что её нарушения требуют какого-то объяснения. Ну, разные есть гипотезы, в которых фигурируют эти монополи, но почему мы не обнаруживаем их здесь, тоже там разные объяснения, вплоть до того, что на ранних стадиях возникновения Вселенной они были и попросту оказались вытолкнутыми за пределы окружающего нас пространства. В общем, есть теории, в которых они фигурируют, и в рамках тех теорий ищутся объяснения, почему мы их не находим на Земле. Пока мы, ссылаясь на то, что они не обнаружены, пишем здесь ноль и имеем дело только с замкнутыми силовыми линиями.

Теперь обратимся к четвёртому уравнению. Читаем его: возьмём замкнутый контур, зададимся направлением обхода (обход и нормаль должны образовывать правый винт), в каждой точке определяем, берём скалярное произведение, получаем число, для всех элементов находим эти скалярные произведения, получаем циркуляцию по контуру, это некоторое число. Уравнение утверждает, что, если эта циркуляция отлична от нуля, то отлична от нуля правая часть. А здесь что? Плотность тока связана с движущимися зарядами, скалярное произведение - это заряд, который проскакивает через эту площадку за единицу времени. Если циркуляция по контуру отлична от нуля, то это означает, что какие-то заряды пересекают поверхность, натянутую на этот контур. Это смысл четвёртого уравнения.


Тогда мы можем сделать такой вывод: силовые линия магнитного поля замкнута, возьмём в качестве контура какую-то линию магнитного поля, по этой линии, потому что произведение не меняет знак. Это означает, что, если я возьму поверхность S , натянутую на силовую линию магнитного поля, то, заведомо, эту поверхность пересекают заряды таким образом:

Можно сказать, что силовая линия магнитного поля всегда охватывает ток, иначе говоря, это выглядит так: если мы имеем проводник, по которому течёт ток Á, для любого контура, который охватывает проводник с током, ; если имеется несколько проводников, опять я возьму контур, поверхность, на него натянутую, её протыкают два проводника, тогда, при чём с учётом знаков: ток Á 1 - положительный, Á 2 -отрицательный. Мы имеем тогда. Вот это сразу общие такие свойства магнитного поля и тока. Значит, силовая линия всегда охватывает ток.

Магнитное поле бесконечного прямого проводника с током

Пусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой Á. А сила тока это что такое? , - заряд, который пересекает поверхность S за время. Система обладает осевой симметрией. Если мы введём цилиндрические координаты r, j , z , то цилиндрическая симметрия означает, что и, кроме того, при смещении вдоль оси OZ , мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия и. Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

Вот ортогональная плоскость,

вот окружность радиуса r ,

я возьму тут касательный вектор, вектор, направленный вдоль j , касательный вектор к окружности.

Тогда, где.

В качестве замкнутого контура выбираем окружность радиуса r=const . Пишем тогда, сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии (R – радиус кривизны проводника), будет справедлива эта формула.

Магнитное поле, создаваемое произвольным проводником с током.

Закон Био-Савара.

Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент, положение этого элемента определяется радиус-вектором, а точка наблюдения задаётся радиус-вектором. Утверждается, что этот элемент проводника создаст в этой точке индукцию по такому рецепту: . Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла. Тогда поле, создаваемое всем проводником: , или, мы можем написать теперь интеграл: . Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.

Пример. Магнитное поле кругового витка с током.


Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы Á. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:

Общая картина силовых линий тоже просматривается (рис.7.10 ).

По идее, нас интересовало бы поле, но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х ,0,0).

Направление вектора определяется векторным произведением. Вектор имеет две составляющие: и. Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , = , а. , и, наконец , .

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна: .

Поле длинного соленоида.

Соленоидом называется катушка, на которую намотан проводник.

Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать =0, а внутри соленоида =const . Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13 ), а теперь пишем: .

Это полный заряд. Эту поверхность протыкают витки

(полный заряд)= (число витков, протыкающих эту поверхность).

Мы получим такое равенство из нашего закона: , или

Поле на большом расстоянии от ограниченного распределения тока.

Магнитный момент

Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.

Если характерный размер системы, то. Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.


По аналогии (как делалось в электростатике) можно показать, что магнитное поле от ограниченного распределения на больших расстояниях подобно электрическому полю диполя. То есть структура этого поля такая:

Распределение характеризуется магнитным моментом. Магнитный момент , где – плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом: . Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-вектор i -ой частицы векторно умножается на скорость i -ой частицы и всё это умножается на заряд этой i -ой частицы.

Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы.

Если мы имеем частицы одного сорта (, например, электроны), то тогда мы можем написать. Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц.

Магнитное поле , создаваемое этим магнитным моментом равно:

(8.1 )

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы Á. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка, где S – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так: . А что такое? Это вектор, направленный вдоль вектора нормали к плоскости витка. А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. Если dS – площадь треугольника, построенного на векторах и, то. Тогда мы пишем магнитный момент равняется. Значит,

(магнитный момент витка с током)=(сила тока) (площадь витка) (нормаль к витку) .

А теперь мы формулу (8.1 ) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы Á, тогда поле в точке на расстоянии х равно: (). Для круглого витка, . На прошлой лекции мы находили магнитное поле круглого витка с током, при эти формулы совпадают.

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1 ), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:


Сила, действующая на проводник с током в магнитном поле

Мы видели, что на заряженную частицу действует сила, равная. Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока. На i -ую частицу действует сила.

Выберем элемент объёма и просуммируем силы, действующие на все частицы этого элемента объёма. Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде: , отсюда – это плотность силы , сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы: .


Обычно ток течёт по линейным проводникам, редко мы сталкиваемся с случаями, когда ток размазан как-то по объёму. Хотя, между прочим, Земля имеет магнитное поле, а от чего это поле? Источник поля это магнитный момент, это означает, что Земля обладает магнитным моментом. А это означает, что тот рецепт для магнитного момента показывает, что должны быть какие-то токи внутри Земли, они по необходимости должны быть замкнутыми, потому что не может быть стационарного разомкнутого поля. Откуда эти токи, что их поддерживает? Я не специалист в земном магнетизме. Какое-то время назад определённой модели этих токов ещё не было. Они могли быть там когда-то индуцированы и ещё не успели там затухнуть. На самом деле, ток можно возбудить в проводнике, и потом он быстро сам кончается за счёт поглощения энергии, выделения тепла и прочего. Но, когда мы имеем дело с такими объёмами как Земля, то там время затухания этих токов, однажды каким-то механизмом возбуждённых, это время затухания может быть очень длительным и длиться геологические эпохи. Может быть, так оно и есть. Ну, скажем, мелкий объект типа Луны имеет очень слабое магнитное поле, это означает, что оно затухло там уже, скажем, магнитное поле Марса тоже значительно слабее поля Земли, потому что и марс меньше Земли. Это я к чему? Конечно, есть случаи, когда токи текут в объёмах, но то, что мы здесь на Земле имеем это обычно линейные проводники, поэтому эту формулу сейчас трансформируем применительно к линейному проводнику.

Пусть имеется линейный проводник, ток течёт с силой Á. Выберем элемент проводника, объём этого элемента dV , . Сила, действующая на элемент проводника перпендикулярна плоскости треугольника, построенного на векторах и, то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу.

Магнитный момент во внешнем поле

Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный. Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим.

Кроме того, на магнитный момент действует сила, равная. Если магнитный момент направлен вдоль, то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе.

Магнитное поле в веществе


Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула, где – момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электрон е , вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент: . Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту: , где вот эта величина – это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.

Элемент объёма dV приобретает магнитный момент, при чём вектор имеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемых парамагнетики , для которых, намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеются диамагнетики , которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору, значит, . Это более тонкий термин. То, что вектор параллелен вектору понятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен. Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться.

Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению, или в дифференциальной форме. Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью . Тогда это уравнение мы напишем в виде.

Проверим размерность: М – это магнитный момент в единице объёма, размерность. Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

Намагниченность характеризуется вектором, он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока, так называемого молекулярного тока, и это уравнение эквивалентно такому: , то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением: , - это настоящие токи, связанные с конкретными носителями зарядов, а это токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде: , . Этот тоже отправим влево и обозначим, вектор называется напряжённостью магнитного поля , тогда уравнение приобретёт вид. (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу: . Для многих сред намагниченность зависит от напряжённости поля, где – магнитная восприимчивость , это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде, – магнитная проницаемость , и мы получаем такую формулу: .

Если, то это парамагнетики, - это диамагнетики, ну, и, наконец, имеются вещества, для которых это принимает большие значения (порядка 10 3), - это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

А вот ещё пример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Квазистационарные поля

Приставке «квази-» русский эквивалент «якобы», то есть имеется в виду, что поле переменное, но не очень. Теперь мы полагаем, наконец, но оставим одно: , чтобы не учитывать влияния электрического поля на магнитное. Уравнения Максвелла приобретают такой вид:

3) и 4) уравнения не изменились, это означает, что связь магнитного поля с токами в каждой точке осталась такой же, только мы теперь допускаем изменяющиеся со временем токи. Ток со временем может меняться, но связь магнитного поля и тока остаётся та же самая. Поскольку магнитная индукция связана с током линейно, будет меняться синхронно с током проводника: ток нарастает, магнитное поле нарастает, но связь между ними не меняется. А вот для электрического поля появляется новшество: циркуляция связана с изменением магнитного поля.

Явление электромагнитной индукции

Обнаруживается связь между электрическими и магнитными полями, если магнитное поле меняется со временем. Переменное магнитное поле является источником вихревого (замкнутого) электрического поля. Эпитет «вихревой» это не какая-нибудь метафора, а это просто означает, что силовые линии электрического поля замкнуты. Явление электромагнитной индукции описывается уравнением.

Магнитный поток, «поток» – это термин, вы не должны думать, что там течёт, это просто такая величина. Если поле однородное, а площадка перпендикулярна силовым линиям, то для этого случая; если площадка ориентирована так, что нормаль к ней перпендикулярна силовым линиям, то есть магнитное поле скользит по этой поверхности площадки, то поток будет равен нулю. Наглядно величина Ф – это число силовых линий, пересекающих данную площадку. Это число на самом деле зависит от того, как густо мы их нарисуем, но тем не менее эти слова имеют смысл. Имеем однородное магнитное поле. Вот, я возьму площадку 1, тут поток один, теперь я возьму ту же самую площадку, но расположу в точке 2. Здесь (в точке 1) её пересекает пять силовых линий, а здесь (в точке 2) – только две. И, как бы я густо их ни рисовал, картина бы не изменилась.

Что утверждает закон? А закон утверждает вот что: возьмём замкнутый контур, на этот контур опирается поверхность S , вычисляем магнитный поток через поверхность, и закон утверждает, если магнитный поток через поверхность, опирающуюся на контур, изменяется со временем, то есть, то циркуляция напряжённости по контуру не равна нулю и равна. Это означает, что в среднем имеется составляющая электрического поля вдоль этого контура, направленная всё время в одну сторону.

Если я возьму проволочный контур, магнитный поток через площадь будет меняться, то в этом контуре появится электрический ток. Вот такое явление и называется явлением электромагнитной индукции.

Явление электромагнитной индукции – это появление тока в контуре, если меняется магнитный поток через этот контур.

Электродвижущая сила

Интеграл обозначают и называется эта величина электродвижущая сила. Какой смысл имеет термин? В своё время силами называли что ни попадя, сейчас слово «сила» употребляется в одном смысле: правая часть Второго закона Ньютона. И как раз наследие этих старых времён электродвижущая сила применительно к этой величине.

Квазистационарные токи

Вот условие квазистационарности для тока: . О чём говорит это уравнение? Уравнение утверждает, что циркуляция напряжённости магнитного поля равняется полному току, который течёт через поверхность этого контура. А я теперь сделаю вот что: возьму поверхность (пузырь), опирающуюся на контур, а теперь стягиваю горловину. Когда я стягиваю этот контур к точке, вот эта левая часть стремится к нулю, потому что нигде не может достигать бесконечных значений, а что делается с правой частью? Поверхность становится замкнутой при стягивании контура в точку. Из этих рассуждений мы получаем, что. Вот это есть условие квазистационарности тока. Физически это означает вот что: какой заряд за единицу времени втекает в замкнутую поверхность, такой заряд и вытекает. Это означает в частности вот что: если имеется три проводника, следствие из утверждения будет, что. Охватим точку пересечения замкнутой поверхностью, поскольку токи втекающие за единицу времени и вытекающие равны, это и означает, что.

Закон Ома

Для металлических проводников с хорошей точностью выполняется такой закон: , где величина называется проводимость, это некоторая константа, характеризующая способность проводника проводить ток. Это закон в дифференциальной форме, какое отношение он имеет к закону, который вы хорошо знаете? Это следствие, кстати, получите его для цилиндрического проводника.

Закон Ома для цепи с э.д.с.


С другой стороны мы уже знаем, что для конденсатора, отсюда. q , Á – функции времени, чисто формально нужно изгнать одну функцию. Охватим пластину замкнутой поверхностью, (плотность тока в проводнике на сечение проводника – это сила тока). Составляем систему уравнений, откуда получаем дифференциальное уравнение, которое немедленно решается:. Начальные условия у нас такие: t=0 , q(0)=q 0 , следовательно A=q 0 . .

Явление самоиндукции

Это частный случай электромагнитной индукции. По контуру течёт ток, возникает переменное магнитное поле, Ф= , э.д.с., которая наводится в контуре равна: , . Это явление называется самоиндукцией. , L – коэффициент самоиндукции (самоиндуктивность), зависящий от геометрии контура и от окружающей среды. Тогда мы получили такой закон: .

Индуктивность длинного соленоида


Рассмотрим один виток: , следовательно. Это в одном витке, а полная э.д.с. находится суммированием по всем виткам: , коэффициент перед – коэффициент самоиндукции.

Вот вопрос: имеем катушку, что будет, если концы этой катушки всунуть в розетку? Меня этот вопрос интересовал с детства вот в связи с чем: это было давно и там всякие были проекты космических полётов, в качестве одного из проектов был такой: сделать длинный соленоид (такая магнитная пушка) в нём снаряд (металлический космический корабль), и в таком магнитном поле в длинной трубе он должен был бы разгоняться, выстреливаться и лететь. Была у меня такая книжка, там был этот один из проектов, ну, и я решил посмотреть. Взял соорудил картонную трубку, намотал на неё проволоку, посадил туда железную штучку и сунул в розетку посмотреть, будет ли оно лететь. Эффект был, конечно, впечатляющий, когда это всё со страшной вспышкой горело. Но сама проблема, что будет, если обмотку катушки всунуть в розетку, меня с тех пор занимает. Вот вопрос: что будет, если взять обмотанную катушку и сунуть в розетку? Ответ такой: если намотано там достаточно много витков, тогда сопротивление этой намотки будет равно нулю, будет течь переменный ток такой, что э.д.с. самоиндукции в каждый момент времени будет уравновешивать напряжение на клеммах розетки, чем больше индуктивность катушки, тем меньше будет ток, и ничего пикантного не произойдёт, при постоянном токе она сгорит, для постоянного тока такая катушка будет коротким замыканием. Переменный ток – катушку со сколь угодно малым сопротивлением, если у неё достаточно большая индуктивность, можно втыкать, и ничего страшного не произойдёт.


Энергия магнитного поля

Мы уже задавались подобным вопросом для электрического поля и обнаружили, что дарового электрического поля создать нельзя, для этого требуются энергетические, а, следовательно, и финансовые затраты. С магнитным полем точно также: создать даром магнитное поле нельзя. Для того, чтобы создать магнитное поле, необходимо совершить определённую работу, мы сейчас её вычислим.

При нарастании тока в цепи возникает э.д.с., равная. Эта э.д.с. направлена «против шерсти» (против тока). Для поддержания этого тока требуется мощность. Значит, работа, которую надо совершить за время dt равна: . Мораль: для того, чтобы сила тока увеличилась на d Á, надо совершить работу dA такую (она определяется уже наличным током к моменту времени t ). Полная работа это будет интеграл: . Для того, чтобы создать силу тока Á, необходима работа, где L – коэффициент самоиндукции.

А теперь спрашивается, куда эта работа девается? Ответ: запасается в виде энергии магнитного поля. Наглядно: имеем генератор с ручкой, мы крутим эту ручку. Работа, которую мы совершаем, крутя эту ручку, переходит в энергию магнитного поля и размазывается по всему пространству.

Пусти магнитное поле локализовано в длинном соленоиде, тогда работа равняется: , но, а, и мы получаем: . Эта работа равняется энергии магнитного поля: , величина имеет смысл плотности энергии. В элементе объёма содержится энергия, а в объёме V - .

Магнитное поле обладает энергией, и плотность энергии, можно ли её высвободить? Да, конечно, если магнитное поле исчезает, то эта энергия выделяется в той или иной форме.

Создание тока в цепи с индуктивностью

Это создание тока в любой цепи, потому что любая цепь обладает индуктивностью. Имеем такую систему: батарейка, ключ, R – сопротивление цепи, L – индуктивность цепи (не обязательно, чтобы была катушка, потому что, повторяю, любая цепь обладает индуктивностью, но мы нарисуем её). У нас есть правило для замкнутого контура: . В данном случае, если ток в цепи меняется, то у нас присутствует э.д.с. батарейки, сосредоточенные там сторонние силы, а кроме того, за счёт самоиндукции развивается э.д.с. Пишем: (- это э.д.с. самоиндукции), мы получаем такое уравнение: , или, или. Такое дифференциальное уравнение, линейное, первой степени, неоднородное, решается: . Определим А из начальных условий: , это означает, что. Мы тогда получаем окончательно: . При получаем – разумное решение, а начальная стадия – экспоненциальное нарастание:


Почему, спрашивается, когда вы включаете свет, то он вспыхивает мгновенно? Ответ такой: просто мала индуктивность. Если, например, последовательно с лампочкой поставить хорошую катушку и пустить переменный ток, то лампа вообще гореть не будет, если же подсоединить к аккумулятору, то лампочка будет медленно загораться, а зато, когда вы её выключать будете, там тоже интересная вещь произойдёт: выключение магнитного поля – это выделение энергии, гром, молния и т.д.

Мы закончили обсуждение квазистационарных процессов. Теперь движемся дальше, и последняя тема у нас в электричестве – нестационарные поля.

Нестационарные поля

Ток смещения

Нестационарные поля описываются полным набором уравнений Максвелла без всяких изъятий:

То, что мы до сих пор рассматривали, это четыре уравнения. Но в четвёртом было изъято слагаемое. Начнём выяснение роли этого слагаемого.

Кстати, весь набор называется «уравнения Максвелла», почему? Первое уравнение – это фактически закон Кулона; второе – закон электромагнитной индукции, который открыл Фарадей; третье – выражает тот факт, что линии магнитной индукции замкнуты, тут трудно даже указать авторство; вот, если выкинуть это слагаемое, то четвёртое уравнение – это закон Био-Савара. Что сделал Максвелл? Одну вещь: он добавил в одно уравнение это слагаемое, и весь набор получил название «уравнения Максвелла».

А теперь, вот, я не могу сказать, так ли Максвелл рассуждал, но можно привести пример, на котором это уравнение сломалось бы. Вот такой пример. Рассмотрим сферически симметричное распределение заряда, и пусть заряд растекается таким образом: скажем, имеем заряженный шар и заряд растекается из этого шара по радиальным лучам. А теперь спрашивается: какое магнитное поле создаёт вот такой сферически симметричный ток? Ну, поскольку у нас источник сферически симметричный, то магнитное поле должно также быть сферически симметричным. Что это означает? Картина поля должна быть такая, что, если это поле повернуть вокруг любой оси, проходящей через центр симметрии, оно должно переходить в себя. Прекрасно. Но из уравнения 3. следует, что силовые линии магнитного поля замкнуты, мы это уже обсуждали, и создать конфигурацию таких замкнутых линий, чтобы она обладала сферической симметрией, нельзя. Осевую симметрию можно, то есть, чтобы поле переходило в себя при поворотах вокруг некоторой оси, а чтобы оно переходило в себя при поворотах вокруг любой оси… Если напрячь воображение, ясно, что из замкнутых линий сферически симметричного магнитного поля создать нельзя. Из уравнения 3. следует, что для вот такого сферически симметричного тока, то есть магнитное поле не создаётся, то есть магнитное поле не создаётся.

Возьмём такой контур, контур, площадь которого перпендикулярна линиям тока. Применим вот к этому контуру уравнение 4*. – циркуляция по этому контуру не равна нулю. Почему? Потому что уравнение говорит, что циркуляция равна плотности тока, умноженной на эту площадку. Через эту площадку ток течёт, а, раз ток течёт, то циркуляция по этому контуру равна силе тока через эту площадку, во всяком случае, не ноль. Значит, получается, из третьего уравнения следует, что, а из уравнения 4*. следует, что. Оказалось, что два уравнения конкурируют применительно к этой ситуации. Какой вывод, и что, вообще говоря, верно, создаёт такая конфигурация магнитное поле или не создаёт? Соображения симметрии – это более мощные соображения, значит, верно, что, то есть выигрывает третье уравнение. Это означает, что четвёртое уравнение со звёздочкой не верно. Но, если добавить это слагаемое, тогда нет противоречий между этими двумя уравнениями.

Ещё одно соображение, повторяю, я не знаю, Максвеллу приходило это в голову или нет, но могло приходить в голову и, наверно, приходило. Для электромагнитного поля в пустоте уравнение 2. даёт: . Вот, когда пишется частная производная, имеется в виду, что контур фиксирован в пространстве, контур не движется. Смысл его такой, что, если меняется со временем (не то, что контур переехал куда-нибудь), то возникает электрическое поле. Уравнение 4*. даёт для пустого пространства, потому что в пустоте нет. Нарушается симметрия, то есть, вообще говоря, здесь было бы неплохо, если бы циркуляция по равнялась бы потоку от производной. Какая физика стоит за этим уравнением? Переменное магнитное поле создаёт электрическое поле, а переменное электрическое поле – ничего не создаёт. Вот, соображения симметрии в нынешней физике очень популярны, ну, потому что это ключ ко многим проблемам, нарушение симметрии раздражает и нуждается в объяснении. На самом деле, если мы возьмём полное уравнение 4., то настоящее уравнение в пустоте даст следующее: . Уравнение 2. Фарадей открыл экспериментально, а это – симметричное явление электромагнитной индукции – это Максвелл высосал из пальца. Никаких экспериментальных данных для этого не было, потому что, на самом деле, этот эффект очень трудно наблюдаем (константа очень мала), и практически создать переменное электрическое поле и обнаружить возникновение магнитного поля в те времена было невозможно. Можно было сыграть на очень больших производных, короче говоря, просто двигая электрическим зарядом, заметное магнитное поле не создастся, скажем, если вы этот заряд дёргаете с частотой миллион колебаний в секунду, можно мыло бы заметить магнитное поле. Если двигать заряд, согласно уравнению 4., создастся магнитное поле, но настолько маленькое при умеренных частотах, что практически его обнаружить нельзя. Максвелл написал его по аналогии, следствием оказалось существование электромагнитных волн, о которых до Максвелла никто и не помышлял. И когда примерно через двадцать лет электромагнитные волны были обнаружены, вот тогда эта Максвелловская теория и вот это уравнение 4. были признаны, наконец, и все эти построения из гипотезы превратились в теорию.

Величина (это величина, по размерности равная плотности тока) называется током смещения . Название принадлежит Максвеллу, название осталось, а аргументация пропала: ничего там не смещается, и название «ток смещения» не должно вызывать в вас никаких ассоциаций с тем, что там что-то смещается, это термин, который остался по историческим причинам.

Мораль такая: переменное электрическое поле само по себе создаёт магнитное поле. И всё замыкается! Переменное магнитное поле является источником электрического, переменное электрическое поле является источником магнитного, и уравнения в вакууме приобретают симметричный вид (отличие только в знаке перед производной, но это не столь страшное нарушение симметрии).

Введение этого тока смещения в первом примере спасает дело: на этой картине и. Короче говоря, циркуляция по любому контуру – ноль. Таким образом, четвёртое уравнение для этого сферически симметрично растекающегося тока даёт, что магнитное поле равно нулю. Эта Максвелловская поправка навела порядок, и теория стала непротиворечивой.

Закон сохранения энергии для электромагнитного поля

Я напишу уравнения Максвелла в дифференциальной форме:

Теперь делаем следующее: уравнение 2) я скалярно умножу на, уравнение 4) я скалярно умножу на:

Теперь из второго уравнения вычтем первое:

Для однородного диэлектрика. Это были наводящие соображения, на самом деле, в общем случае, точно также. Тогда уравнение приобретает такой вид: или

Есть теорема Гаусса, которая сводит интеграл по объёму от дивергенции к поверхностному интегралу . Имеет место тождество, буква у меня S у меня уже занята, поэтому я пишу σ . Тогда выбираем в пространстве некоторый объём V , σ – ограничивающая его поверхность, и мы получаем такую вещь: . В пустоте тока нет, и мы получаем уравнение (9.1).

Напомню закон сохранения заряда: . Смысл какой? Если заряд убывает, то за счёт того, что он вытекает через поверхность, ограничивающую объём.

Теперь смотрим на формулу (9.1): скорость изменения w в объёме выражается через изменение вектора через эту поверхность. Структура одинаковая, вопрос, что такое w и что такое? Что такое w , мы уже знаем: это плотность энергии электромагнитного поля , плотность энергии электромагнитного поля в единице объёма. Тогда интеграл – это полная энергия электромагнитного поля в объёме. это энергия, протекающая через единицу площади за единицу времени, а это плотность потока энергии (вектор Пойнтинга ), по размерности =Вт , а = .

Это работа электромагнитного поля в единице объёма. Эта работа может проявляться в виде тепла или в виде работы, если там стоит мотор, например.

А теперь применение этой теоремы. Такая цепь (см. рис.9.2. ), кружочком обозначен мотор. Ключ замыкается, мотор вертится, и я желаю применить эту теорему. Возьму замкнутую поверхность σ , тогда мы получим. Интеграл – это мощность электродвигателя или работа в единицу времени, . Мотор совершает работу за счёт энергии, которая втекает в объём. Это я к чему говорю? Мотор совершает работу за счёт того, что через замкнутую поверхность, которой его можно охватить, из вакуума течёт энергия поля, которая представляется вектором Пойнтинга. Это означает, что для того, чтобы электромотор работал. В окрестности должны присутствовать два поля, так как.

Энергия передаётся через пустое пространство и втекает внутрь этого объёма. Спрашивается тогда, чего же электрика валяют дурака и тянут провода от источника к потребителю? Ответ очевиден: провода нужны для того, чтобы создать такие поля и соответствующей конфигурации. Тогда вопрос другой, а нельзя ли создать такие поля, чтобы энергия передавалась через пустоту без проводников? Можно, но это в следующий раз. Так, всё, конец.

В прошлый раз мы рассмотрели вектор Пойтинга. Напомню, энергия электромагнитного поля передаётся через пустое пространство, не по проводам. В общем виде ситуация тут такая: имеется некоторая область, в эту область загоняется какая-то энергия (скажем, из этой области торчит вал с ручкой и тут человек этот вал крутит) и дальше эта энергия через пустое пространство втекает в другую область, там, например, находится некоторое устройство, которое перерабатывает втекающую сюда энергию и на выходе выдаёт снова какую-то работу (скажем, здесь стоит генератор или электромотор).

Электромагнитные волны

Я уже говорил, что Максвелл усовершенствовал уравнения (добавил туда ток смещения), и получилась, наконец, замкнутая теория, и венцом постижения этой теории было предсказание существования электромагнитных волн. Надо понимать, что никто этих волн до Максвелла не видел, никто даже не подозревал, что такие вещи могут быть. Но, как только были получены эти уравнения, из них математически следовало, что должны существовать электромагнитные волны, и лет через двадцать после того, как это предсказание было сделано, они стали наблюдаемы, и тогда был триумф теории.

Уравнения Максвелла допускает существование вещи, которая называется электромагнитной волной. Но в природе оказывается так – то, что возможно в рамках правильной теории, то и на самом деле существует.

Сейчас мы должны будем усмотреть вслед за Максвеллом, что должны быть эти волны, то есть совершить такое математическое открытие, чтобы, глядя на уравнения Максвелла, сказать: «А, ну, конечно, должны быть волны».

Уравнения Максвелла в пустоте

Чем замечательна пустота? В пустоте нет зарядов, . Уравнения приобретают вид:

Ну, и сразу бросается в глаза замечательная симметрия, симметрия нарушается только тем, что в уравнении 4) константа размерная и знак. Размерная константа – несущественно, это связано с системой единиц, можно выбрать такую систему единиц, где эта константа просто единицей будет. Это дифференциальные уравнения, но положение осложняется тем, что переменные перекрещиваются. Поставим для начала скромную задачу – написать уравнение, которое содержало бы только одну неизвестную величину, например.

Значит, первая наша цель – исключить из уравнения 2) . Как исключит? А очень просто: мы видим, что в четвёртом уравнении сидит переменная, если мы на это уравнение подействуем векторно оператором, то в правой части выскочит …

Второе уравнение даёт: . Добавляя четвёртое уравнение мы получаем: или

Мы получили уравнение, которое утверждает, что вторая производная по времени от связана со вторыми производными от компонент по координатам, то есть изменение величины в данной точке со временем увязано с пространственным изменением этой величины.

Волновое уравнение и его решение

Вот чисто математическая проблема:

уравнение вида, где – функция координат и времени, и константы, называется волновым уравнением .

Не будем решать уравнение в частных производных, а я сейчас предъявлю одно важное частное решение, и будет доказано, что оно действительно является решением.

Утверждение. Функция вида удовлетворяет волновому уравнению (частное решение).

Частное решение, вообще-то, угадывается и проверяется методом тыка. Вот, мы сейчас подставим это решение в уравнение и проверим. Что уравнение утверждает? Что вторая производная по времени от этой функции совпадёт с пространственными производными.

Вот чем замечательна комплексная экспонента: можно было бы записать действительные синусы и косинусы, но дифференцировать экспоненты гораздо приятнее, чем синусы и косинусы.

Значит, . Опять замечательная вещь: оператор действует на функцию, эта функция просто умножается на, тогда немедленно находим повторное действие оператора : .

Подставим в исходное уравнение: , отсюда получаем.

Мораль такая: функция вида удовлетворяет нашему уравнению, но только при таком условии:

Это факт математический. Нам остаётся сообразить теперь, что эта функция изображает.

Если перейти в действительную область, то есть взять сужение этого множества функций на класс действительных функций, это будет решение такого типа: . Чтобы не мучиться с тремя переменными, можно это дело упростить: пусть, тогда. Заметим, что это никакое не ограничение общности, ось х мы всегда можем выбрать вдоль вектора. Мы получили функцию от двух переменных: . А теперь будем смотреть, что эта функция представляет.

Делаем мгновенную фотографию: фиксируем момент времени и смотрим пространственную конфигурацию.

Период синуса 2π, ясно, когда х меняется на λ длину волны (пространственный период), то синус должен измениться на 2π, мы имеем такое соотношение: . Мы проинтерпретировали константу k волновое число , а вектор – волновой вектор. Эта мгновенная фотография показывает, как функция зависит от пространства.

Теперь будем следить за временным изменением, то есть сидим в точке х и смотрим, что делается с функцией со временем. Фиксируем, тогда, значит, в фиксированной точке опять синусоидальная функция времени. Мы имеем, поскольку период синуса 2π, то есть мы проинтерпретировали константу, называется частотой .

И остаётся, наконец, последнее: запустить обе переменные λ и t , что тогда эта функция будет изображать? Тоже легко понять.

Если, то, а означает в свою очередь, что. Для событий, для которых координата – линейная функция времени, функция всё время одна и та же. Это можно проинтерпретировать так: если мы будем бежать вдоль оси х со скоростью, то мы будем всё время видеть перед собой одно и тоже значение этой функции.


Функция, которую мы получили – это синусоидальная волна, бегущая вправо вдоль оси х .

Если мы запустим х и t одновременно, то окажется, что эта синусоида бежит вдоль оси со скоростью, вот такое решение мы получили, ну и тогда понятно, почему это называется волной.

Вот то, что я говорил, что, если мы будем бежать с такой скоростью, мы будем видеть одно и то же значение функции, наглядно:

волны на воде . Для волны на воде – это отклонение волны от горизонтального уровня. Когда вы будете бежать вдоль этой волны со скоростью её распространения, то вы всё время будете видеть перед собой одну и ту же высоту над поверхностью воды.

Другой пример – звуковая волна .

Имеем синусоидальную звуковую волну. Как её создать? Источник колеблется с одной частотой (такой гул на одной частоте мы редко воспринимаем, он, кстати, очень раздражает). Если идёт такая волна определённой тональности, то, когда вы стоите, у вас в ухе давление со временем меняется и создаёт силу, которая давит на перепонку в ухе, колебания перепонки передаются в мозги, с помощью там разных передаточных устройств, и мы будем слышать звук. А что будет, если вы будете бежать вдоль волны со скоростью её распространения? Будет постоянное давление на перепонку и всё, не будет никакого звука. Правда, пример гипотетический, потому что, если в воздухе бежать со скоростью звука, то у вас будет так свистеть в ушах, что вам не будет не до восприятия этой струны.

Волна бежит со скоростью, но у нас такое соотношение: . Мы видим, что скорость – это та константа, которая стоит в уравнении.

Решением волнового уравнения является синусоидальная волна, бегущая со скоростью с .

А теперь вернёмся к уравнениям Максвелла. Мы там получили, что. Для магнитного поля аналогично. Такая функция удовлетворяет этому уравнению. При условии, что. Значит, должны быть электромагнитные волны, распространяющиеся с такой скоростью. И вот тут уже круг замкнулся. Максвелл получил волновое уравнение и определил скорость волны, а к тому времени было известно экспериментальное значение скорости света, и обнаружилось, что эти скорости равны.


Компьютер так бы и считал: разбивал с заданной точностью кривую на элементы и суммировал. Как завести в компьютер векторное поле? Таблицей: пространство разбиваем на ячейки и заносим значение вектора в каждой ячейке, кривая так же заносится в виде таблицы. В анализе есть способы, как брать такие интегралы, но нас это сейчас не волнует, нам нужно понять смысл.

) Здесь я ввёл новый математический символ – частная производная, но чтоб не было недоразумений: . Удобнее писать вместо, потому что оно прямо содержит в себе указание на то, что нужно делать.

Между прочим, вот, в порядке упражнения полезно было бы для вас вычислить, и убедиться, что вы получите предыдущую формулу для напряжённости поля. Это, вот, для самопроверки (не в физике, а в математической квалификации), если вы её получите – это признак того, что вы владеете соответствующим в математике, если нет, –тогда пойдите к своему преподавателю мат. анализа, и пусть он вас там или научит, или накажет.

) Поле, создаваемое заданным распределением заряда.

) Любое распределение заряда, рассматриваемое из бесконечности, ну, или издалека, оно всегда ведёт себя как точечный заряд.

) Интегрирование ведётся по, когда по интегрирование будет проведено, то эта переменная вылетает вообще, мы получаем число, это сидит здесь как параметр, то есть значение интеграла зависит от, от положения точки, в которой ищется потенциал.

) Очевидная вещь, что, если мы отойдём достаточно далеко от этого распределения, то какое станет поле? Как от точечного заряда. Значит, на большом расстоянии можно ответ писать сразу: потенциал как от точечного заряда.

) Это пока точная формула, тут стоит малая величина и квадрат малой величины, вот, если б мы выкинули их, мы получили бы поле точечного заряда, мы же выкинем квадрат малой величины и сделаем формулу более аккуратной.

) Интегрирование ведётся по штрихованной переменной, по координатам элемента объёма, относительно этого интегрирования.

) Есть целый раздел мат. физики, специально посвящённый решению этого уравнения, и мы обсуждать это не будем.

) Слово «ёмкость», в общем-то, неудачное, потому что оно наводит на ассоциации бытовые, вроде ёмкость ведра или ёмкость чашки, на самом деле, никакого такого смысла нет. Это я вас просто предупреждаю, потому что часто бывают недоразумения; возникает такое ощущение, что ёмкость проводника связана с зарядом, который можно посадить на этот проводник; на любой проводник можно посадить любой заряд, будет просто различный потенциал при этом, ёмкость будет коэффициентом пропорциональности между потенциалом и зарядом и всё.

) Вы должны уметь находить ёмкость сферического и цилиндрического конденсаторов.

Мы учитываем, что интегрируется по и для всех другие величины – константы.

Интеграл по А D =интегралу по ВС =0, так как, интеграл по CD =0, потому что там по предположению. А на отрезке АВ векторы и параллельны.

Направление нормали задаётся правилом правого винта (обход и нормаль должны образовывать правый винт).

Это даже можно сделать. Известно, есть радиактивный распад (когда из ядра вылетают заряженные α-частицы), возьмём шар вот такого радиактивного вещества, из которого вылетают по радиусу α-частицы (это положительно заряженные ядра гелия), эти заряженные частицы представляют вот такой радиальный ток. То есть, эта ситуация реализуема.

Физические законы такие вообще, что, когда в них встречается дивергенция какого-то вектора, то у всякого физика непременно возникает желание интегрировать по объёму эту дивергенцию.

Имеет место такое математическое тождество. Из первого уравнения, поэтому.

Воспользуемся формулой и учтём, что.

Современные технические устройства позволяют получить электромагнитные волны и изучить их свойства. Лучше использовать волны сантиметрового диапазона (=3см). Сантиметровые волны излучаются специальным генератором сверхвысокой частоты (СВЧ). Генератор с помощью рупорной антенны излучает электромагнитные волны. Электромагнитная волна, достигая приемника, преобразуются в электрические колебания, которые усиливаются усилителем и подаются на громкоговоритель. Электромагнитные волны излучаются рупорной антенной в направлении от рупора. Приёмная антенна в виде такого же рупора принимает волны, которые распространяются вдоль её оси.

Свойства электромагнитных волн:

  • Отражаются от проводников (отражение от металлической пластинки)
  • Проходят через диэлектрики (прохождение и поглощение волн (картон, стекло, дерево, пластмасса и т.д.)
  • Преломляются на границе диэлектрика (изменение направления на границе диэлектрика)
  • Интерферируют
  • Являются поперечными (поперечность электромагнитных волн, доказывается поляризацией с помощью металлических стержней)

Шкала электромагнитных волн

Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн)

Радиоволны

Как уже отмечалось, радиоволны могут значительно различаться по длине - от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике - дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

Микроволны

Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

Инфракрасные лучи

Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей -- как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например, для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Видимый свет

Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800-400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн. Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

Ультрафиолетовые лучи

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400-10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных -- тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации. Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

Рентгеновские лучи

Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы.

Гамма-лучи

Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре -- это?-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

Все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. В частности, микроволновые излучения с большими длинами волн нередко относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.

2. Применение электромагнитных волн в быту

Без электричества человечество уже давно не мыслит своего существования. С помощью него работают все бытовые приборы, вся наша промышленность, медицинские приборы. Безусловно, электромагнитные волны нужны и полезны, но в то же время они оказывают и вредное воздействие на человека.

Источниками низкочастотных излучений (0 - 3 кГц) являются все системы производства, передачи и распределения электроэнергии (линии электропередачи, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро- и электронную технику, в том числе и мониторы ПК, транспорт на электроприводе, ж/д транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.

Электромагнитное поле на 18-32% территории городов формируется в результате автомобильного движения. Электромагнитные волны, возникающие при движении транспорта, создают помехи теле- и радиоприему, а также могут оказывать вредное воздействие на организм человека. Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт - постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц) включают в себя функциональные передатчики - источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Источником электромагнитного поля в жилых помещениях является разнообразная электротехника - холодильники, утюги, пылесосы, электропечи, телевизоры, компьютеры и др., а также электропроводка квартиры. На электромагнитную обстановку квартиры влияют электротехническое оборудование здания, трансформаторы, кабельные линии. Электрическое поле в жилых домах находится в пределах 1-10 В/м. Однако могут встретиться точки повышенного уровня, например, незаземленный монитор компьютера.

Замеры напряженности магнитных полей от бытовых электроприборов показали, что их кратковременное воздействие может оказаться даже более сильным, чем долговременное пребывание человека рядом с линией электропередачи. Если отечественные нормы допустимых значений напряженности магнитного поля для населения от воздействия линии электропередачи составляют 1000 мГс, то бытовые электроприборы существенно превосходят эту величину.

Индукция магнитного поля от электроплит типа "Электра" на расстоянии 20-30 см от передней панели - там, где стоит хозяйка, - составляет 1-3 мкТл. У конфорок, оно, естественно, больше. А на расстоянии 50 см уже неотличимо от общего поля в кухне, которое составляет около 0,1-0,15 мкТл.

Невелики и магнитные поля от холодильников и морозильников, у обычного бытового холодильника поле выше предельно допустимого уровня (0,2 мкТл) возникает в радиусе 10 см от компрессора и только во время его работы. Однако у холодильников, оснащенных системой "no frost" (заморозка без инея), превышение предельно допустимого уровня можно зафиксировать на расстоянии метра от дверцы.

СВЧ-печи, в силу принципа своей работы, служат мощнейшим источником излучения. Но по той же причине их конструкция обеспечивает соответствующую экранировку, да и пища разогревается или готовится в них быстро. Но все же опираться локтем на включенную "микроволновку" не стоит. На расстоянии 30 см печь создает заметное переменное (50 Гц) магнитное поле (0,3-8 мкТл). Неожиданно малыми оказались поля от мощных электрических чайников. Так, на расстоянии 20 см от чайника "Tefal" поле составляет около 0,6 мкТл, а на расстоянии 50 см неотличимо от общего электромагнитного поля в кухне.

У большинства утюгов поле выше 0,2 мкТл обнаруживается на расстоянии 25 см от ручки и только в режиме нагрева.

Зато поля стиральных машин оказались достаточно большими, на частоте 50 Гц у пульта управления составляет более 10 мкТл, на высоте 1 метра - 1 мкТл, сбоку на расстоянии 50 см - 0,7 мкТл. В утешение можно заметить, что большая стирка - не столь частое занятие, да и при работе автоматической или полуавтоматической стиральной машины хозяйка может отойти в сторонку или просто выйти из ванной.

Еще больше поле у пылесоса. Оно порядка 100 мкТл. Впрочем, здесь тоже есть утешительное обстоятельство: пылесос обычно таскают за шланг и находятся от него достаточно далеко.

Рекорд держат электробритвы. Их поле измеряется сотнями мкТл. Таким образом, бреясь электробритвой, убивают сразу двух зайцев: приводят себя в порядок и попутно проводят магнитную обработку лица.

Радиоволны большой длины от длинноволновых радиопередающих центров (РПЦ) "накрывают" соответственно и большее пространство. Электрическую составляющую волны экранируют стены зданий, но магнитную они ослабляют мало. В свое время в штате Мэн (США) была развернута система радиосвязи с подводными лодками, находящимися на глубине в океане. Морская вода сильно поглощает радиоволны, но все-таки, чем больше длина волны, тем поглощение меньше. Поэтому связь вели на частоте 15 Гц, то есть на длине волны 20 тысяч километров. А так как излучаемая антенной мощность пропорциональна кубу отношения ее размеров к длине волны, то антенны протянулись почти через весь штат.

В 1920 - 30 гг. в московских домах, расположенных вокруг радиостанции имени Коминтерна, которая вещала на длине волны 2 км, можно было провести такой опыт. Намотать на рамку около сотни витков, присоединить к концам лампочку от карманного фонарика - и она загоралась. Для этого напряженность магнитного поля должна была составлять никак не меньше нескольких А/м. Сейчас во многих странах это предельно допустимый уровень для 8-часового рабочего дня.

Большую проблему составляют ведомственные и частные РПЦ, которые в последние годы растут как грибы после дождя. К примеру, только Министерству связи РФ принадлежит более 100 передающих радиоцентров (а ведь под них отводится большая площадь - до 1000 га). Телевизионные передатчики расположены почти всегда в городах. Их антенны размещены на высоте 110 м на расстоянии 1 км, типичные значения напряженности электрического поля достигают 15 В/м от передатчика мощностью 1 МВт.

Единственное, что радует, это то, что на фоне РПЦ антенны базовых станций сотовой телефонной связи вносят незначительный вклад в электромагнитное загрязнение городских улиц. Разумеется, если не влезать на крышу дома, где их обычно устанавливают, и не изучать конструкцию антенны.

3. Воздействие электромагнитных волн на организм человека

Западная промышленность уже реагирует на повышающийся спрос к бытовым приборам и персональным компьютерам, чье излучение не угрожает жизни и здоровью людей, рискнувших облегчить себе жизнь с их помощью. Так, в США многие фирмы выпускают безопасные приборы, начиная от утюгов с бифилярной намоткой и кончая неизлучающими компьютерами.

В нашей стране существует Центр электромагнитной безопасности, где разрабатываются всевозможные средства защиты от электромагнитных излучений: специальная защитная одежда, ткани и прочие защитные материалы, которые могут обезопасить любой прибор. Но до внедрения подобных разработок в широкое и повседневное их использование пока далеко. Так что каждый пользователь должен позаботиться о средствах своей индивидуальной защиты сам, и чем скорее, тем лучше. Сотрудники Центра электромагнитной безопасности провели независимое исследование ряда компьютеров, наиболее распространенных на нашем рынке, и установили, что "уровень электромагнитных полей в зоне размещения пользователя превышает биологически опасный уровень" .

Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, режима его генерации (импульсное, непрерывное), длительности воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Чем короче длина волны, тем большей энергией она обладает. Высокочастотные излучения могут ионизировать атомы или молекулы в соматических клетках - и т.о. нарушать идущие в них процессы. А электромагнитные колебания длинноволнового спектра хоть и не выбивают электроны из внешних оболочек атомов и молекул, но способны нагревать органику, приводить молекулы в тепловое движение. Причем тепло это внутреннее - находящиеся на коже чувствительные датчики его не регистрируют. Чем меньше тело, тем лучше оно воспринимает коротковолновое излучение, чем больше - тем лучше воспринимает длинноволновое.

Особенно чувствительны к неблагоприятному воздействию электромагнетизма эмбрионы и дети. Человек, создав такой вид излучения, не успел выработать к нему защиты. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Наиболее чувствительными к действию электромагнитных полей являются центральная нервная система (субъективные ощущения при этом - повышенная утомляемость, головные боли и т. п) и нейроэндокринная система.

С нарушением нейроэндокринной регуляции связывают эффект со стороны сердечно-сосудистой системы, системы крови, иммунитета, обменных процессов, воспроизводительной функции и др. Влияние на иммунную систему выражается в снижении фагоцитарной активности нейтрофилов, изменениях комплиментарной активности сыворотки крови, нарушении белкового обмена, угнетении Т-лимфоцитов. Возможны также изменение частоты пульса, сосудистых реакций. Описаны изменения кроветворения, нарушения со стороны эндокринной системы, метаболических процессов, заболевания органов зрения. Было установлено, что клинические проявления воздействия радиоволн наиболее часто характеризуются астеническими, астеновегетативными и гипоталамическими синдромами:

1. Астенический синдром. Этот синдром, как правило, наблюдается в начальных стадиях заболевания и проявляется жалобами на головную боль, повышенную утомляемость, раздражительность, нарушение сна, периодически возникающие боли в области сердца.

2. Астеновегетативный или синдром нейроциркулярной дистонии. Этот синдром характеризуется ваготонической направленностью реакций (гипотония, брадикардия и др.).

3. Гипоталамический синдром. Больные повышенно возбудимы, эмоционально лабильны, в отдельных случаях обнаруживаются признаки раннего атеросклероза, ишемической болезни сердца, гипертонической болезни.

Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика), а умеренных - к изменению сетчатки глаза по типу ангиопатии.

В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы, стойким нервно-психическим заболеваниям, изменению кровяного давления, замедлению пульса, трофическим явлениям (выпадению волос, ломкости ногтей и т. п.).

Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. Интенсивные электромагнитные поля вызывают у работающих нарушение функционального состояния центральной нервной, сердечнососудистой и эндокринной системы, страдает нейрогуморальная реакция, половая функция, ухудшается развитие эмбрионов (увеличивается вероятность развития врожденных уродств). Также наблюдаются повышенная утомляемость, вялость, снижение точности движений, изменение кровяного давления и пульса, возникновение болей в сердце (обычно сопровождается аритмией), головные боли. В условиях длительного профессионального облучения с периодическим превышением предельно допустимых уровней у части людей отмечали функциональные перемены в органах пищеварения, выражающиеся в изменении секреции и кислотности желудочного сока, а также в явлениях дискинезии кишечника. Также выявлены функциональные сдвиги со стороны эндокринной системы: повышение функциональной активности щитовидной железы, изменение характера сахарной кривой и т.д. Предполагается, что нарушение регуляции физиологических функций организма обусловлено воздействием поля на различные отделы нервной системы. При этом повышение возбудимости центральной нервной системы происходит за счет рефлекторного действия поля, а тормозной эффект - за счет прямого воздействия поля на структуры головного и спинного мозга. Считается, что кора головного мозга, а также промежуточный мозг особенно чувствительны к воздействию поля. В последние годы появляются сообщения о возможности индукции ЭМИ злокачественных заболеваний. Еще немногочисленные данные все же говорят, что наибольшее число случаев приходится на опухоли кроветворных тканей и на лейкоз в частности.

Исследователи США и Швеции установили факт возникновения опухолей у детей при воздействии на них магнитных полей частоты 60 Гц и напряженностью 2-3 мГс в течение нескольких дней или даже часов. Такие поля излучаются телевизором, персональной ЭВМ. Наблюдения за людьми, которые регулярно пользовались электродрелями, показали неблагоприятное для здоровья действие низкочастотных электромагнитных полей частотой 50 - 60 Гц: ночью у большинства испытуемых повышался в крови уровень мелатонина - гормона шишковидной железы, или эпифиза. Эпифиз играет роль основного "ритмоводителя" функций организма Нарушение этого ритма может повлечь за собой серьёзные заболевания, в частности, образование опухоли.

В конце 1995 года было опубликовано 14 работ по исследованию возможного развития рака молочной железы у лиц, имеющих контакт с электромагнитным полем в производственных условиях или в быту. В Варшаве проводилось исследование, которое показало, что у лиц, облучавшихся электромагнитным полем, вероятность развития рака лимфатической системы и кроветворных органов была больше в 6,7 раза, рака щитовидной железы - в 4,3 раза, наиболее обычен рак легкого при действии микроволнового излучения.

4. Защита от электромагнитных излучений

Действие электромагнитного излучения на организм человека в основном определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в, тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обусловливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении, практически невозможен. Тем не менее, можно сделать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового -- кожей и подкожной клетчаткой, дециметрового -- внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей тела человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования как отдельных органов, так и организма в целом.

Нормы допустимого облучения устанавливаются для обеспечения безопасных условий труда обслуживающего персонала источников излучения и всех окружающих лиц.

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.

Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.

Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также материал, из которого изготовлен экран.

Толщина экрана в основном определяется частотой и мощностью излучения и мало зависит от применяемого металла.

Очень часто для экранирования применяется металлическая сетка. Экраны из сетки имеют ряд преимуществ. Они просматриваются, пропускают поток воздуха, позволяют достаточно быстро ставить и снимать экранирующие устройства.

Заключение

Живые объекты излучают электромагнитные волны. Клетки, ткани и органы являются структурами с точными электрическими характеристиками. Движение зарядов в организме человека связано с метаболическими процессами, происходящими в организме. Огромное количество биохимических реакций сопровождается разнообразными частотными характеристиками собственного электромагнитного излучения.

Бурное развитие отраслей народного хозяйства привело к использованию во всех промышленных производствах, в медицине и в быту электромагнитных волн. Причем в ряде случаев человек оказывается подвержен их воздействию. Электромагнитные волны, взаимодействуя с тканями тела человека, вызывают определенные функциональные изменения. При интенсивном облучении эти изменения могут оказать вредное воздействие на организм человека.

Человек «приручает» электромагнитные волны, создает все более безопасные бытовые приборы, ведь знание природы воздействия электромагнитных волн на организм человека, норм допустимых облучений, методов контроля интенсивности излучений и средств защиты от них является совершенно необходимым для дальнейшего успешного их применения все в более новых отраслях науки и техники.

Список литературы

1. С.П. Бортников «Безопасность жизнедеятельности» учебно-методический комплекс, Ульяновск, 2004.
2. Т.А. Хван, П.А. Хван. Основы экологии. Серия "Учебники и учебные пособия". Ростов н/Д: "Феникс", 2003.
3. Физика, 9 кл. / А.В. Перышкин, Е.М. Гутник. М.: Дрофа, 2002

Предлагаем вашему вниманию курс лекций по общей физики, читаемых в Московском физико-техническом институте (государственный университет). МФТИ является одним из ведущих российских ВУЗов, готовит специалистов в области теоретической и прикладной физики и математики. МФТИ расположен в городе Долгопрудный (Московская область), при этом часть корпусов ВУЗа территориально находятся в Москве и в Жуковском. Один из 29 национальных исследовательских университетов.

Отличительной чертой учебного процесса в МФТИ является так называемая «система Физтеха», нацеленная на подготовку учёных и инженеров для работы в новейших областях науки. Большинство студентов обучается по направлению «Прикладная математика и физика»

Лекция 1. Основные понятия механики

В данной лекции речь пойдет о базовых понятиях кинематики, а также о криволинейном движении.

Лекция 2. Законы Ньютона. Реактивное движение. Работа и энергия

Законы Ньютона. Масса. Сила. Импульс. Реактивное движение. Уравнение Мещерского. Уравнение Циолковского. Работа и энергия. Силовое поле.

Лекция 3. Движение в поле центральных сил. Момент импульса

Силовое поле (продолжение предыдущей лекции). Движение в поле центральных сил. Движение в поле потенциальных сил. Потенциал. Потенциальная энергия. Финитное и инфинитное движение. Твердое тело (начало). Центр инерции. Момент сил. Момент импульса.

Лекция 4. Теорема Кёнига. Столкновения. Основные понятия специальной теории относительности

Теорема Кёнига. Центр инерции. Приведенная масса. Абсолютно упругий удар. Неупругий удар. Пороговая энергия. Специальная теория относительности (начало). Основы специальной теории относительности. Событие. Интервал. Инвариантность интервала.

Лекция 5. Релятивистские эффекты. Релятивистская механика

Специальная теория относительности (продолжение). Преобразования Лоренца. Релятивистская механика. Уравнение движения в релятивистком случае.

Лекция 6. Принцип относительности Эйнштейна.

Специальная теория относительности (продолжение). Принцип . Вращательное движение твердого тела. Гравитационное поле (начало). Теорема Гаусса в гравитационном поле.

Лекция 7. Законы Кеплера. Момент инерции относительно оси

Гравитационное поле (продолжение). Центрально симметричное поле. Задача двух тел. Законы Кеплера. Финитное и инфинитное движение. Твердое тело (продолжение). Момент инерции относительно оси.

Лекция 8. Движение твердого тела

Твердое тело (продолжение). Момент инерции. Теорема Эйлера об общем движении твердого тела. Теорема Гюйгенса-Штейнера. Вращение твердого тела относительно закрепленной оси. Угловая скорость. Качение.

Лекция 9. Тензор и эллипсоид инерции. Гироскопы

Твердое тело (продолжение). Скатывание тел. Тензор инерции. Эллипсоид инерции. Главные оси инерции. Гироскопы (начало). Трехстепенный гироскоп. Волчок с закрепленной точкой. Основное соотношение гироскопии.

Лекция 10. Основное соотношение гироскопии. Физический маятник

Гироскоп (продолжение). Нутация. Колебания (начало). Физический маятник. Фазовая плоскость. Логарифмический декремент затухания. Добротность

Лекция 11. Колебательное движение

Колебания (продолжение). Затухающие колебания. Сухое трение. Вынужденные колебания. Колебательная система. Резонанс. Параметрические колебания.

Лекция 12. Затухающие и незатухающие колебания. Неинерциальные системы отсчета

Колебания (продолжение). Незатухающие колебания. Затухающие колебания. Фазовый портрет. Описание волны. Неинерциальные системы отсчета (начало). Силы инерции. Вращающиеся системы отсчета.

Лекция 13. Неинерциальные системы отсчета. Теория упругости


Неинерциальные системы отсчета (продолжение). Выражение для абсолютного ускорения произвольно движущейся системы. Маятник Фуко. Теория упругости (начало). Закон Гука. Модуль Юнга. Энергия упругой деформации стержня. Коэффициент Пуассона.

Лекция 14. Теория упругости (продолжение). Гидродинамика идеальной жидкости

Теория упругости (продолжение). Всестороннее растяжение. Всестороннее сжатие. Одностороннее сжатие. Скорость распространения звука. Гидродинамика (начало). Уравнение Бернулли для идеальной жидкости. Вязкость.

Лекция 15. Движение вязкой жидкости. Эффект Магнуса


Гидродинамика (продолжение). Движение вязкой жидкости. Сила вязкого трения. Течение жидкости в круглой трубе. Мощность потока. Критерий ламинарности течения. Число Рейнольдса. Формула Стокса. Обтекание крыла потоком воздуха. Эффект Магнуса.

Надеемся, вы по достоинству оценили лекции Владимира Александровича Овчинкина - кандидата технических наук, доцента кафедры общей физики МФТИ.

Для справки, в мае 2016 года МФТИ вошёл в топ-100 самых престижных вузов планеты британского журнала Times Higher Education.

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Ростовский государственный строительный университет»

Утверждено

Зав. кафедрой физики

__________________/Н.Н. Харабаев/

Учебно-методическое пособие

КОНСПЕКТ ЛЕКЦИЙ по физике

(для всех специальностей)

Ростов-на-Дону

Учебно-методическое пособие. Конспект лекций по физике (для всех специальностей). – Ростов н/Д: Рост. гос. строит. ун-т, 2012. – 103 с.

Содержится конспект лекций по физике, основанный на учебном пособии Т.И. Трофимовой «Курс физики» (изд-во Высшая школа).

Состоит из четырех частей:

I. Механика.

II. Молекулярная физика и термодинамика.

III. Электричество и магнетизм.

IV. Волновая и квантовая оптика.

Предназначено для преподавателей и студентов в качестве теоретического сопровождения лекций, практических и лабораторных занятий с целью достижения более глубокого усвоения основных понятий и законов физики.

Составители: проф. Н.Н.Харабаев

доц. Е.В.Чебанова

проф. А.Н. Павлов

Редактор Н.Е.Гладких

Темплан 2012 г., поз. Подписано в печать

Формат 60х84 1/16. Бумага писчая. Ризограф. Уч.-изд.л. 4,0.

Тираж 100 экз. Заказ

_________________________________________________________

Редакционно-издательский центр

Ростовского государственного строительного университета

334022, Ростов-на-Дону, ул. Социалистическая, 162

© Ростовский государственный

строительный университет, 2012

Часть I. Механика

Тема 1. Кинематика поступательного и вращательного движения. Кинематика поступательного движения

Положение материальной точки А в декартовой системе координат в данный момент времени определяется тремя координатамиx , y и z илирадиусом-вектором – вектором, проведенным из начала системы координат в данную точку (рис. 1).

Движение материальной точки определяется в скалярном виде кинематическими уравнениями: x = x(t) ,у = y(t) ,z = z(t),

или в векторном виде уравнением: .

Траектория движения материальной точки – линия, описываемая этой точкой при её движении в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Материальная точка, двигаясь по произвольной траектории, за малый промежуток времени Dt переместиться из положенияА в положениеВ , пройдя при этом путьDs , равный длине участка траекторииАВ (рис. 2).

Рис. 1 Рис. 2

Вектор , проведенный из начального положения движущейся точки в момент времениt в конечное положение точки в момент времени (t + Dt ), называется перемещением, то есть .

Вектором средней скорости называется отношение перемещенияк промежутку времениDt , за который это перемещение произошло:

Направление вектора средней скорости совпадает с направлением вектора перемещения.

Мгновенной скоростью (скоростью движения в момент времени t ) называется предел отношения перемещения к промежутку времениDt , за который это перемещение произошло, при стремлении Dt к нулю: = ℓim Δt →0 Δ/Δt = d/dt =

Вектор мгновенной скорости направлен по касательной, проведенной в данной точке к траектории в сторону движения. При стремлении промежутка времениDt к нулю модуль вектора перемещения стремится к величине путиDs , поэтому модуль вектора v может быть определен через путь Ds : v = ℓim Δt →0 Δs/Δt = ds/dt =

Если скорость движения точки со временем изменяется, то быстрота изменения скорости движения точки характеризуется ускорением .

Средним ускорением ‹a› в интервале времени от t до (t + Dt ) называется векторная величина, равная отношению изменения скорости () к промежутку времениDt , за который это изменение произошло: =Δ/Δt

Мгновенным ускорением илиускорением движения точки в момент времени t называется предел отношения изменения скорости к промежутку времениDt , за который это изменение произошло, при стремлении Dt к нулю:

,

где – первая производная от функциипо времениt ,

ВВЕДЕНИЕ

Предмет физики и его связь со смежными науками.

Физика (природа в переводе с греческого) - одна из основных наук о природе, изучающая общие свойства и законы движения вещества физических полей.

В современном виде физика включает в себя следующие основные разделы:

1) механику;

2) акустику;

3) учение о теплоте;

4) учение об электричестве;

5) оптику;

6) молекулярную физику;

7) атомную физику;

8) физику элементарных частиц, атомного ядра и космических лучей;

9) учение о гравитационном поле.

Изучение курса физики при подготовке инженерных кадров важно 2-х точек зрения:

1. для выработки правильного диалектико-материалистического мировоззрения, т.е. обобщенное представление о мире в целом, т.к. различные физические законы и явления представляют собой прекрасные иллюстрации общих законов и принципов марксистско-ленинской философии.

2. физика является научной основой технического образования. Фундаментальные законы природы, изучаемые физикой - теоретическая база для развития техники. Физика сегодняшнего дня - это техника – это техника завтрашнего дня. Уже современная техника обладает такими огромными возможностями, что далеко превосходит вымыслы Жюль Верна. Открытия законов природы, сделанные учеными физиками, послужили основой технического прогресса человечества. Любая область техники развиваясь, опирается на знание физических законов, энергетика (учение об электричестве), космонавтика (механику), атомная энергия (атомную и ядерную физику).

Технические науки представляют собой как бы разросшиеся ветви на стволе физической науки. Таковы, например, электро- и радиотехника, теплотехника, астрофизика, биофизика и др.

Границы между физикой и другими естественными науками не могут быть установлены резко. Существуют обширные пограничные области:

физическая химия и химическая физика, биофизика, астрофизика, прикладная оптика и др.

Дальнейший прогресс нашего общества невозможен без науки вообще и физики в частности.

Изучение физики мы начинаем с механики.

Гл.1. Физические основы механики

Литература: I. Савельев И.В. Курс общей физики. - М.: Наука, 1989. -Т. I.

2. Сивухин Д.В. Курс общей Физики. - М.: Наука, 1986. Т.

3. БерклеевскиЙ Курс физики. - М.: Наука, 1975-77. Т. I

4. Фанман Р., Лейтон Р. Файнмановские лекции по физике. М.: Мир, 1977. Вып. 1-10.

5. Трофимова Т.И. Курс физики. - М.: Высшая школа, 1990.

6. Волькенштейн В.С. Сборник задач по общему курсу физи­ки. - М.: Наука, 1987.

7. Хайкин С.Э. Физические основы механики. - М.: Наука, 1971.

8. Орир Д.К. Физика. - М.: Мир, 1981. Т. 1-2.

1. Механика, ее разделы и абстракции, применяемые при изучении движений

Механика - учение о простейшей форме движения материи, которое состоит в перемещении тел или их частей относительно друг друга. Ме­ханика - учение о механическом движении.

Механику обычно делят на 3 части: кинематику, статику, динамику,

В кинематике рассматривается движение тел вне связи с причинами, которые вызывают это движение или изменяют его.

В статике изучаются законы равновесия одного тела или системы тел.

Динамика рассматривает законы движения тел и причины, которые вызывают или изменяют движение.

При анализе сложных процессов, где трудно проследить и выявить основные причинные связи, стараются прежде всего отделить главные закономерности от второстепенных. При этом с целью упрощения рассматривают условную схему явления, пользуясь научными абстракциями. Без применения физических абстракций, отображающих только частично процесс или какую-либо из его сторон, любая, даже простейшая, задача будет разрешимой.

В механике пользуются следующими абстракциями: а) материальная точка; б) абсолютно твердое тело; в) абсолютно упругое тело и др.

Материальная точка - понятие применимое к такому телу, размерами которого можно пренебречь по сравнению с размерами, характеризующими движение этого тела.

Пример. - движение Земли вокруг Солнца. Землю и Солнце можно считать материальными точками, хотя их радиусы соответственно 6х10 6 м. и 7х10 8 м. Однако эти расстояния малы по сравнению с расстоянием между центрами этих небесных тел (1,5х10 11 м). Однако при изучении вращения Земли вокруг своей оси представление о Земле как о точке неприменимо.

Аналогично можно рассматривать движение океанского лайнера в порту и океане и т.д.

Совокупность нескольких тел, каждое из которых можно считать материальной точкой - называется системой материальных точек (наша Галактика) в некоторых случаях газ, состоящий из молекул.

Абсолютно твердое тело - система материальных частиц, расстояние между которыми не изменяется при произвольных перемещениях этой системы. А.т.т. - тело, которое ни при каких условиях не деформируется. Например, диск, совершающий крутильно-гармонические колебательные движения. Период колебания диска зависит только от массы, его размеров, однородности материала, из которого он изготовлен, распределения масс относительно центра, но не зависит от его упругих свойств. При этом отдельные части диска не изменяют своего положе относительно друг друга.

Абсолютно упругое тело - тело, основными характеристиками которого являются его упругие свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот.

Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта.

Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий истинности наших познаний об окружающем мире.

2. Системы единиц измерения физических величин.

Измерить какую-либо физическую величину - это значит сравнить ее с другой однородной физической величиной, принятой за единицу I измерения. Следовательно, для измерения физических величин необходимо выбрать единицы измерения (эталоны). Эталоны можно выбрать произвольно, но они должны удовлетворять следующим требованиям:

а) легко воспроизводиться в любом количестве;

б) должны быть удобны для пользования в практической деятельности.

Выбор единиц, их хранение и воспроизведение определяются методологией, ВНИИ метрологии г. Ленинграда.

Чаще всего выбирают несколько эталонов для некоторых независимых физических величин и принимают их за основные. Эталоны (единицы измерения) всех остальных величин, называемые производными, получают, пользуясь физическими законами. Эталоны - это меры и измерительные приборы, предназначенные для хранения и воспроизведения единиц измерений с наивысшей достижимой при данном состоянии науки и техники точностью и принятые в общегосударственном или международном масштабе.

Совокупность основных и производных единиц образуют системы единиц. Т.к. выбор основных единиц произволен, то может быть построен целый ряд систем единиц СГС, в мех. СГСЭ, в эл. МКС МКГСС и др. В пос­леднее время в качестве предпочтительной принята Международная система единиц СИ - единая система для всех разделов физики.

В этой системе основными единицами измерения являются:

длины L – 1 м 1.650.763,73 излучения оранжевого цвета изотопа криптона 86 в вакууме.
массы M – 1 кг ед. массы, равная массе междуна-родного прототипа килограмма.
времени T – 1 с время, равное 9192631770 периодам излучения линии 2 S 1/2 в спектре атома цезия-133.
температура T o – 1 К температура, равная 1/273,15 термодинамической температуры затвердевания дистиллированной воды при 101 325 Па.
количество в-ва v – 1 моль количество вещества, содержащее столько атомов, сколько содержится в 0,012 кг нуклида у С 12 .
сила тока J – 1А Сила тока, который, проходя по двум || прямым проводникам ¥ длина и ничтожного сечения, расположенных на расстоянии 1 м в вакууме, вызывает силу 2х10 -7 Н на каждый метр длины.
сила света Jсв I Кд Кандела. Сила света, испускаемого 1/600000 м 2 в ^ к этой поверхности направлении при т-ре затвердевания платаны и при давлении 101 325 Па.
Дополнительные 1 рад – единица плоского угла. 1 ср – стерадиан - единица телесного угла.

1.3. Размерность физических величин.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то