Алканы — номенклатура, получение, химические свойства. Применение алканов Урок алканы 10

Муниципальное бюджетное образовательное учреждение «Актанышская средняя общеобразовательная школа №1»

Актанышского муниципального района Республики Татарстан

Химия

10 класс

Тип урока: изучение нового материала

Форма урока: урок – путешествие с применением компьютера (с использованием мультимедиа- средств обучения)

Валиева Эльвира Фанисовна

Тема урока: Алканы, получения, свойства и применение

Урок – путешествие с мультимедийным сопровождением

I . Цели урока.

1. Развивающие цели.

    Развивать у школьников логическое мышление, сформировать умение составлять уравнения реакции с участием алканов.

    Формировать интеллектуальные умения: умения анализировать свойства алканов, выделять главное, сравнивать, обобщать и систематизировать.

    Развивать волю и самостоятельность. Развивать умение владеть собой: уверенность в своих силах, умение преодолевать трудности в учении химии.

2. Образовательные цели.

    Обеспечить усвоение учащимися химических свойств и способов получения алканов.

    Обобщить и закрепить, систематизировать, ранее полученные знания по видам гибридизации, по номенклатуре органических соединений.

    Формировать навыки работы с игровыми элементами, видеофрагментами, иллюстративными материалами.

    Формировать культуру здоровья на уроках химии.

    Выявить недостаточно освоенные темы и скорректировать учебный процесс и готовить учащихся к ЕГЭ.

3. Воспитательные цели.

    Воспитывать культуру речи учащихся.

    Воспитать экологическую культуру и мышление у учащихся.

II . Тип урока: изучение нового материала.

III . Вид урока: урок с применением компьютера (с использованием мультимедиа- средств обучения).

IV . Инновационные, информационные технологии обучения, основанные на применении современной передовой техники – компьютеров, интерактивной доски, проектора.

V . Методы урока:

А. Иллюстративно-игровой

Б. Преподавания – сообщающий.

    обучения – а/ программированный б/ иллюстративно игровой

2)преподавания – а/ объяснительный б/ стимулирующий 3) учения – а/ репродуктивный б/ частично поисковый

VI . Средства: Компьютер, иллюстративный материал,

игровые элементы, лабораторные опыты и демонстрация на видео.

Ход урока:

На экране проектора:

Карта путешествия по стране «Алканы»

Информационная Привал

Разминка Информационная

Старт C n H 2 n +2

Техника

безопасности

Финиш Эксперимент

I станция. Разминка. Старт.

1. Устный опрос

1. Бензин, бытовой газ, растворители, пластмассы, красители, спирты, лекарства, духи – все продукты …

2. Болотный газ. Образуется при гниении, при сухой перегонке угля. Является главной составной частью природных газов…

3. Сколько видов органических веществ?

4. из него делают расчески, украшения, бильярдные шары, игрушки, мячи, щетки …

5. Материал для изготовления чемоданов…

6.Многие известные душистые вещества относятся к классу…

7.Всемирно известные духи – французские «Суар де Пари» и «Шанель» изготовлены из каких веществ?

8. Топливо для организма…

9. Это вещество наркотик, не безвреден для человека, парализует нервную, сердечно-сосудистую систему, печень …

10. Кто открыл теорию строения органических соединений?

11. Кто ввел понятие «гибридизация»

12. Что такое изомеры?

2. На экране проектора вопросы и задания

Ученики отвечают. После ответа учеников компьютер сразу дает правильный ответ.

1. Сколько электронов на втором уровне атома углерода.

2. Распределите электроны по орбиталям углерода в возбужденном состоянии.

3. Гибридизация атомных орбиталей.

а) Какие электроны перекрываются?

б) Образование ковалентных связей в молекуле метана (медикация)

в) Образование Г и П связей в молекуле этилена (медикация)

г) Образование Г и П связей в молекуле ацетилена (медикация)

д) Расположение С атомов в пространстве (медикация)

4. К какому классу относятся следующие соединения?

R-OH, R-C , R-C , R-O-R, R-CI

OH H

5. Общие формулы каких соединений изображены?

C n H 2 n +2 , C n H 2 n , C n H 2 n -2 ,

C n H 2 n +1 COOH , C n H 2 n +1 COH

6.Что такое гомологический ряд? Изображение на экране

H H H H H H H H H

H —C — C —H H —C —C —C —H H —C —C —C —C —H

H H H H H H H H H

7. Какая формула лишняя?

C 2 H 6 CH 4 C 6 H 16 C 16 H 34 C 2 H 4 C 12 H 24 C 4 H 10

3. Вспомним алгоритм называния веществ ациклического строения.

На экране формула вещества:

H 3 C

CH —CH 2 —CH 3

H 3 C

Медикация с озвучиванием:

1. Выберите самую длинную углеродную цепь

2. Пронумеруйте её с той стороны, к которой ближе радикалы, или старший заместитель, или кратная связь.

(на экране происходит нумерация)

3. Указать в префиксе положения.(номер атома углерода) и назвать радикалы, заместителя, функциональной группы в алфавитном порядке.(на экране 2 – метил -)

4.Назвать основной углеводород (на экране 2-метил- бутан)

5.Если есть двойная связь, то после корня поставить суффикс –ен, для тройной связи -ин, если кратных связей нет – суффикс – ан.

II Информационная станция

1. Физические свойства алканов.

На экране схемы;

Учитель рассказывает: к метану специально добавляют серосодержащие соединения – меркаптаны, для того, чтобы люди могли по запаху определить утечку.

Демонстрация веществ: гексана, парафина

Разветвленные алканы кипят при более низких температурах, чем прямые.

Пишут в тетради: C 1 — C 4 газы

CH 4 — T пл = -182,5 °С

C 5 – C 15 — жидкости

С 16 – С n — твердые

2. Способы получения алканов.

    Алканы в больших количествах получают из природного газа и нефти.

    Из простых веществ в электрическом разряде:

C+2H 2 →CH 4

    Гидролиз карбида алюминия

3 -4

AI 4 C 3 +6HOH → 4AI(OH) 3 +3CH 4

    Нагревание моногалогеноалканов с металлическим натрием (реакция Вюрца)

C 2 H 5 Br+2Na+Br-C 2 H 5 → C 2 H 5 — C 2 H 5 + 2NaBr

Если разные галогеноалканы, то результатом будет смесь трех продуктов: t °

3CH 3 Br + 3Na + 3Br-C 2 H 5 →CH 3 -CH 3 + CH 3 -CH 2 -CH 3 +C 2 H 5 -C 2 H 5

5. Декарбоксилирование. Сплавление ацетата натрия со щелочью. Полученный этим способом алкан будет иметь на один атом углерода меньше. Демонстрация опыта на экранекомпьютера (с озвучиванием)

6. Гидролиз реактива Гриньяра:

7.Алканы симметричного строения могут быть получены в результате электролиза солей карбоновых кислот (реакция Кольба)

III . Станция Привал . (Ученики отдыхают, слушают музыку).

IV . Информационная станция.

3. Химические свойства алканов.

Так как связи в алканах малополярные, то для них характерны радикальные реакции, реакции замещения.

1.Реакции замещения.

а) С галогенами (галогенирование). С хлором на свету, с бромом при нагревании.

В случае избытка хлора хлорирование идет дальше, до полного замещения атомов водорода.

Реакция идет по радикальному механизму.

2.Реакции отщепления

а) Дегидрирование (отщепление водорода)

б) Крегинг алканов:

Крекинг -0 радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге образуется смесь алканов с меньшим числом С атомов. Механизм свободно радикальный. Этот процесс является важнейшей стадией переработки нефти.

в) при температуре 1500 0 С метан пиролизуется

г) при температуре 1000 0 С:

3 Реакции окисления.

а) В присутствии избытка кислорода происходит полное сгорание алканов до СО 2 и Н 2 О. При сгорании алканов выделяется большое количество теплоты, на этом основано их применение в качестве топлива.

V .Экспериментальная станция

На экране видеофрагмент с озвучиванием «Горение метана» с озвучиванием:

Низкие алканы горят бесцветным пламенем, а с ростом числа атомов углерода в молекуле пламя алканов становится все более окрашенным и коптящим.

VI . Станция Техника безопасности

а)Газообразные углеводороды с воздухом в определенных соотношениях могут взрываться!

б) В условиях недостатка кислорода происходит неполное сгорание, продуктом является сажа (С) ядовитый газ СО

в) При мягком окислении алканов кислородом воздуха на катализаторах могут быть получены спирты, альдегиды, кислоты с меньшим количеством атомов углерода в молекуле.

4 Реакции изомеризации

Алканы нормального строения при нагревании в присутствии катализатора могут превращаться в алканы с разветвленной цепью.

5. Ароматизация.

Алканы с шестью и более атомами углерода вступают в реакцию дегидрирования с образованием цикла:

    Станция Финиш-закрепление

Вопросы по группам.

Домашнее задание:

Упражнение4,6,7,8(писменно),стр.81.

Урок по химии с применением ИКТ по теме "Алканы"

Цель урока: познакомить учащихся с алканами и выявить важную их роль в промышленности.

Задачи урока:

Образовательная: рассмотреть гомологический ряд предельных углеводородов, строение, физические и химические свойства, способы их получения при переработке природного газа, возможности их получения из природных источников: природного и попутного нефтяного газов, нефти и каменного угля.

Развивающая: развить понятие о пространственном строении алканов; развитие познавательных интересов, творческих и интеллектуальных способностей, развитие самостоятельности в приобретении новых знаний с использованием новых технологий.

Воспитательная: показать единство материального мира на примере генетической связи углеводородов разных гомологических рядов, получаемых при переработки природного и попутного нефтяного газов, нефти и каменного угля.

Оборудование: компьютер, мультимедиа проектор, экран, презентация.

Ход урока

I. Организационный момент. (Сообщить цель и тему урока).

II. Изученного нового материала.

Тема урока: "Алканы". Слайд № 1

План изучения алканов. Слайд № 2

Определение. Общая формула класса углеводородов.

Гомологический ряд.

Виды изомерии.

Строение алканов.

Физические свойства.

Способы получения.

Химические свойства.

Применение.

Алканы. (Предельные углеводороды. Парафины. Насыщенные углеводороды.)

Алканы - углеводороды в молекулах которых все атомы углерода связаны одинарными связями и имеют общую формулу: C n H 2n+2 Слайд № 3

Что такое гомологи?

Гомологический ряд метана

СН 4 метан

С 2 H 6 этан

C 3 H 8 пропан

C 4 H 10 бутан

C 5 H 12 пентан

C 6 H 14 гексан

C 7 H 16 гептан

C 9 H 20 нонан

Гомологи - это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СH 2 .

Структурная изомерия:

Алгоритм.

1. Выбор главной цепи: Слайд № 5

2. Нумерация атомов главной цепи: Слайд № 6

3. Формирование названия: Слайд № 7

2 - метилбутан

Строение алканов.

Атом углерода во всех органических веществах находится в "возбуждённом" состоянии, имеет на внешнем уровне четыре неспаренных электрона.

Каждое электронное облако обладает запасом энергии: s- облако имеет меньший запас энергии, чем р-облако, в атоме углерода они находятся в разных энергетических состояниях. Поэтому при образовании химической связи происходит гибридизация, т. е. выравнивание электронных облаков по запасу энергии. Это отображается на форме и направленности облаков, происходит перестройка (пространственная) электронных облаков.

В результате sp3 - гибридизации все четыре валентных электронных облака гибридизованы: валентный угол между этими осями гибридизованных облаков 109° 28", поэтому молекулы имеют пространственную тетраэдрическую форму, форма углеродных цепей зигзагообразна; атомы углерода не находятся на одной прямой, т. к. при вращении атомов валентные углы остаются прежними.

Все органические вещества построены в основном за счёт ковалентных связей. Углерод - углеродные и углерод - водородные связи относятся к сигма - связям - это связь, образующаяся при перекрывании атомных орбиталей по линии, проходящей через ядра атомов. Возможно вращение вокруг сигма - связей, поскольку эта связь имеет осевую симметрию. Слайд № 13

Физические свойства.

СН 4:C 4 Н 10 - газы

T кипения: -161,6:-0,5 °C

T плавления: -182,5:-138,3 °C

С 5 Н 12:C 15 Н 32 - жидкости

T кипения: 36,1:270,5 °C

T плавления: -129,8:10 °C

T кипения: 287,5 °C

T плавления: 20 °C

С увеличением относительных молекулярных масс предельных углеводородов закономерно повышаются их температуры кипения и плавления. Слайд № 14

Получение.

В промышленности

1) крекинг нефтепродуктов:

C 16 H 34 - C 8 H 18 + C 8 H 16

2) В лаборатории:

а) Гидролиз карбидов:

A l 4 C 3 +12 H 2 O = 3 CH 4 + 4 Al(OH) 3

б) Реакция Вюрца:

C 2 H 5 Cl + 2Na - C 4 H 10 + 2NaCl

в) Декарбоксилирование натриевых солей карбоновых солей:

СН 3 СООNa + 2NaОН - СН 4 + Nа 2 СО 3 Слайд № 15

Химические свойства

Для алканов характерны следующие типы химических реакций:

Замещение атомов водорода;

Дегидрирование;

Окисление.

1) Замещение атомов водорода:

А) Реакция галогенирования:

CH 4 +Cl 2 - CH 3 Cl + HCl

Б) Реакция нитрования (Коновалова):

CH 4 + HNO 3 - CH 3 -NO 2 + H 2 O + Q

В) Реакция сульфирования:

CH 4 + H 2 SO 4 - CH 3 -SO 3 H + H 2 O + Q

2) Реакция изомеризации:

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 - СН 3 -СН-СН 2 -СН 3

3) Реакция с водяным паром:

CH 4 + H 2 O = CO + 3H 2

4) Реакция дегидрирования:

2СН 4 - НС=СН + 3Н 2 + Q

5) Реакция окисления:

CH 4 + O 2 - Н 2 C=О + H 2 O

6) Горение метана:

CH 4 + 2O 2 CO 2 + 2H 2 O + Q Слайд № 20

Применение.

(Возможно, заранее подготовленные выступления учащихся.)

Широко используются в качестве топлива, в том числе для

двигателей внутреннего сгорания, а также при производстве сажи

(1 - картриджи; 2 - резина; 3 - типографическая краска), при получение органических веществ (4 - растворителей; 5 - хладогентов, используемых в холодильных установках; 6 - метанол; 7 - ацетилен) Слайд № 21

III. Закрепление.

Составьте все возможные изомеры для гептана и назовите их.

Составьте 2 ближайших гомолога для пентана и назовите их.

Определить предельный углеводород, плотность паров которого по воздуху равна 2. (C 4 H 10).

Учебник: №12 (стр. 33).

IV. Домашнее задание: Учебник О.С. Габриелян (10 класс базовый уровень): 3, упр. 4, 7, 8 (стр. 32).

Литература.

Горковенко М. Ю. Поурочные разработки по химии к учебным комплектам О. С. Габриеляна и др., 10 (11) класс. М.: "ВЕКО", 2008 г.

ОПРЕДЕЛЕНИЕ

Алканами называются насыщенные углеводороды, молекулы которых состоят из атомов углерода и водорода, связанных между собой только σ-связями.

В обычных условиях (при 25 o С и атмосферном давлении) первые четыре члена гомологического ряда алканов (C 1 — C 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы. Строение молекулы алканов на примере метана приведено на рис. 1.

Рис. 1. Строение молекулы метана.

Алканы практически не растворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан, диэтиловый эфир и др.

Получение алканов

Основные источники различных предельных углеводородов, содержащих до 40 атомов углерода, — нефть и природный газ. Алканы с небольшим числом атомов углерода (1 - 10) можно выделить фракционной перегонкой природного газа или бензиновой фракции нефти.

Различают промышленные (I) и лабораторные (II) способы получения алканов.

C + H 2 → CH 4 (kat = Ni, t 0);

CO + 3H 2 → CH 4 + H 2 O (kat = Ni, t 0 = 200 - 300);

CO 2 + 4H 2 → CH 4 + 2H 2 O (kat, t 0).

— гидрирование непредельных углеводородов

CH 3 -CH=CH 2 + H 2 →CH 3 -CH 2 -CH 3 (kat = Ni, t 0);

— восстановление галогеналканов

C 2 H 5 I + HI →C 2 H 6 + I 2 (t 0);

— реакции щелочного плавления солей одноосновных органических кислот

C 2 H 5 -COONa + NaOH→ C 2 H 6 + Na 2 CO 3 (t 0);

— взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

2C 2 H 5 Br + 2Na → CH 3 -CH 2 -CH 2 -CH 3 + 2NaBr;

— электролиз солей одноосновных органических кислот

2C 2 H 5 COONa + 2H 2 O→H 2 + 2NaOH + C 4 H 10 + 2CO 2 ;

К(-): 2H 2 O + 2e → H 2 + 2OH — ;

A(+):2C 2 H 5 COO — -2e → 2C 2 H 5 COO + → 2C 2 H 5 + + 2CO 2 .

Химические свойства алканов

Алканы относятся к наименее реакционноспособным органическим соединениям, что объясняется их строением.

Алканы в обычных условиях не реагируют с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Для алканов наиболее характерны реакции, протекающие по радикальному механизму. Энергетически более выгоден гомолитический разрыв связей C-H и C-C, чем их гетеролитический разрыв.

Реакции радикального замещения наиболее легко протекают по третичному, дплее - по вторичному и в последнюю очередь по первичному атому углерода.

Все химические превращения алканов протекают с расщеплением:

1) cвязей C-H

— галогенирование (S R)

CH 4 + Cl 2 → CH 3 Cl + HCl (hv );

CH 3 -CH 2 -CH 3 + Br 2 → CH 3 -CHBr-CH 3 + HBr (hv ).

— нитрование (S R)

CH 3 -C(CH 3)H-CH 3 + HONO 2 (dilute) → CH 3 -C(NO 2)H-CH 3 + H 2 O (t 0).

— сульфохлорирование (S R)

R-H + SO 2 + Cl 2 → RSO 2 Cl + HCl (hv ).

— дегидрирование

CH 3 -CH 3 → CH 2 =CH 2 + H 2 (kat = Ni, t 0).

— дегидроциклизация

CH 3 (CH 2) 4 CH 3 → C 6 H 6 + 4H 2 (kat = Cr 2 O 3 , t 0).

2) связей C-H и C-C

— изомеризация (внутримолекулярная перегруппировка)

CH 3 -CH 2 -CH 2 -CH 3 →CH 3 -C(CH 3)H-CH 3 (kat=AlCl 3 , t 0).

— окисление

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 → 4CH 3 COOH + 2H 2 O (t 0 , p);

C n H 2n+2 + (1,5n + 0,5)O 2 → nCO 2 + (n+1) H 2 O (t 0).

Применение алканов

Алканы нашли применение в различных отраслях промышленности. Рассмотрим подробнее, на примере некоторых представителей гомологического ряда, а также смесей алканов.

Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений - спиртов, альдегидов, кислот. Пропан применяется как автомобильное топливо. Бутан используется для получения бутадиена, являющегося сырьем для производства синтетического каучука.

Смесь жидких и твердых алканов до С 25 , называемая вазелином применяется в медицине как основа мазей. Смесь твердых алканов С 18 - С 25 (парафин) применяется для пропитки различных материалов (бумага, ткани, древесина) для придания им гидрофобных свойств, т.е. несмачиваемости водой. В медицине используется для физиотерапевтическихпроцедур (парафинолечение).

Примеры решения задач

ПРИМЕР 1

Задание При хлорировании метана получено 1,54 г соединения, плотность паров по воздуху которого равна 5,31. Рассчитайте массу диоксида марганца MnO 2 , которая потребуется для получения хлора, если соотношение объемов метана и хлора, введенных в реакцию равно 1:2.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

Найдем молярную массу газа, образующегося при хлорировании метана:

M gas = 29 ×D air (gas) = 29 × 5,31 = 154 г/моль.

Это тетрахлорметан - CCl 4 . Запишем уравнение реакции и расставим стехиометрические коэффициенты:

CH 4 + 4Cl 2 = CCl 4 + 4HCl.

Рассчитаем количество вещества тетрахлорметана:

n(CCl 4) = m(CCl 4) / M(CCl 4);

n(CCl 4) = 1,54 / 154 = 0,01 моль.

Согласно уравнению реакции n(CCl 4) : n(CH 4) = 1: 1, значит

n(CH 4) = n(CCl 4) = 0,01 моль.

Тогда, количество вещества хлора должно быть равно n(Cl 2) = 2 × 4 n(CH 4), т.е. n(Cl 2) = 8 × 0,01 = 0,08 моль.

Запишем уравнение реакции получения хлора:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

Число моль диоксида марганца равно 0,08 моль, т.к. n(Cl 2) :n(MnO 2) = 1: 1. Найдем массу диоксида марганца:

m(MnO 2) = n(MnO 2) ×M(MnO 2);

M(MnO 2) = Ar(Mn) + 2×Ar(O) = 55 + 2×16 = 87 г/моль;

m(MnO 2) = 0,08 × 87 = 10,4 г.

Ответ Масса диоксида марганца равна 10,4 г.

ПРИМЕР 2

Задание Установите молекулярную формулу трихлоралкана, массовая доля хлора в котором составляет 72,20%. Составьте структурные формулы всех возможных изомеров и дайте названия веществ по заместительной номенклатуре ИЮПАК.
Ответ Запишем общую формулу трихлоралкеана:

C n H 2 n -1 Cl 3 .

По формуле

ω(Cl) = 3×Ar(Cl) / Mr(C n H 2 n -1 Cl 3) × 100%

рассчитаем молекулярную массу трихлоралкана:

Mr(C n H 2 n -1 Cl 3) = 3 × 35,5 / 72,20 × 100% = 147,5.

Найдем значение n:

12n + 2n - 1 + 35,5×3 = 147,5;

Следовательно, формула трихлоралкана C 3 H 5 Cl 3 .

Составим структурные формулы изомеров: 1,2,3-трихлорпропан (1), 1,1,2-трихлорпропан (2), 1,1,3-трихлорпропан (3), 1,1,1-трихлорпропан (4) и 1,2,2-трихлорпропан (5).

CH 2 Cl-CHCl-CH 2 Cl (1);

CHCl 2 -CHCl-CH 3 (2);

CHCl 2 -CH 2 -CH 2 Cl (3);

CCl 3 -CH 2 -CH 3 (4);

Углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2 n +2 .
В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н -пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи. Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 — 10 м). Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Основы номенклатуры

1. Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем этил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан СН 4 , этан С 2 Н 6 , пропан C 3 H 8 , С 4 Н 10, пентан С 5 Н 12 , гексан С 6 Н 14 , гептан C 7 H 16, октан C 8 H 18, нонан С 9 Н 20, декан С 10 Н 22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С 4 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения характерных реакций галогенирования:


В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода) .
В ходе пропускания алканов над катализатором (Pt, Ni, А1 2 0 3 , Сг 2 0 3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:


Реакции, сопровождающиеся разрушением углеродной цепи.
Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов - это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

3. Пиролиз . При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества:

При нагревании до температуры 1500 °С возможно образование ацетилена:

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Алканы - насыщенные (предельные) углеводороды. Представителем этого класса является метан (СН 4 ). Все последующие предельные углеводороды отличаются на СН 2 - группу, которая называется гомологической группой, а соединения - гомологами.

Общая формула - С n H 2 n +2 .

Строение алканов.

Каждый атом углерода находится в sp 3 - гибридизации , образует 4 σ - связи (1 С-С и 3 С-Н ). Форма молекулы в виде тетраэдра с углом 109,5°.

Связь образуется посредством перекрывания гибридных орбиталей, причем максимальная область перекрывания лежит в пространстве на прямой, соединяющей ядра атомов . Это наиболее эффективное перекрывание, поэтому σ-связь считается наиболее прочной.

Изомерия алканов.

Для алканов свойственна изомерия углеродного скелета. Предельные соединения могут принимать различные геометрические формы, сохраняя при этом угол между связями. Например,

Различные положения углеродной цепи называются конформациями. В нормальных условиях конформации алканов свободно переходят друг в друга с помощью вращения С-С связей, поэтому их часто называют поворотными изомерами. Существует 2 основные конформации - «заторможенное» и «заслоненное»:

Изомерия углеродного скелета алканов.

Количество изомеров возрастает с увеличением роста углеродной цепи. Например у бутана известно 2 изомера:


Для пентана - 3, для гептана - 9 и т.д.

Если у молекулы алкана отнять один протон (атом водорода), то получится радикал:

Физические свойства алканов.

В нормальных условиях - С 1 -С 4 - газы, С 5 -С 17 - жидкости, а углеводороды с количеством атомов углерода больше 18 - твердые вещества.

С ростом цепи повышается температура кипения и плавления. Разветвленные алканы имеют более низкие температуры кипения, чем нормальные.

Алканы нерастворимы в воде , но хорошо растворяются в неполярных органических растворителях. Легко смешиваются друг с другом.

Получение алканов.

Синтетические методы получения алканов:

1. Из ненасыщенных углеводородов - реакция «гидрирования» протекает под воздействием катализатора (никель, платина) и при температуре:

2. Из галогенпроизводных - реакция Вюрца : взаимодействие моногалогенаклканов с металлическим натрием, в результате чего получаются алканы с удвоенным числом углеродных атомов в цепи:

3. Из солей карбоновых кислот . При взаимодействии соли с щелочи, получаются алканы, которые содержат на 1 атом углерод меньше по сравнению с исходной карбоновой кислотой:

4. Получение метана. В электрической дуге в атмосфере водорода:

С + 2Н 2 = СН 4 .

В лаборатории метан получают так:

Al 4 C 3 + 12H 2 O = 3CH 4 + 4Al(OH) 3 .

Химические свойства алканов.

В нормальных условиях алканы - химически инертные соединения, они не реагируют с концентрированной серной и азотной кислотой, с концентрированной щелочью, с перманганатом калия.

Устойчивость объясняется прочностью связей и их неполярностью.

Соединения не склонны к реакциях разрыва связи (реакция присоединения), для них свойственно замещение.

1. Галогенирование алканов. Под воздействием кванта света начинается радикальное замещение (хлорирование) алкана. Общая схема:

Реакция идет по цепному механизму, в которой различают:

А) Инициирование цепи:

Б) Рост цепи:

В) Обрыв цепи:

Суммарно можно представить в виде:

2. Нитрование (реакция Коновалова)алканов. Реакция протекает при 140 °С:

Легче всего реакция протекает с третитичным атомом углерода, чем с первичным и вторичным.

3. Изомризацияалканов. При конкретных условиях алканы нормального строения могут превращаться в разветвленные:

4. Крекингалканов. При дейсвии высоких температур и катализаторов высшие алканы могут рвать свои связи, образуя алкены и алканы более низшие:

5. Окислениеалканов. В различных условиях и при разных катализаторах окисление алкана может привести к образованию спирта, альдегида (кетона) и уксусной кислоты. В условиях полного окисления реакция протекает до конца - до образования воды и углекислого газа:

Применение алканов.

Алканы нашли широкое применение в промышленности, в синтезе нефти, топлива и т.д.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то