Основная функция хлоропластов. Строение и функции хлоропластов. Прочие сведения о путях дифференцирования этих органоидов


Весь процесс фотосинтеза протекает в зеленых пластидах - хлоропластах. Различают три вида пластид: лейкопласты - бесцветные, хромопласты - оранжевые, хлоропласты - зеленые. Именно в хлоропластах сосредоточен зеленый пигмент хлорофилл. Незеленые растения, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий и сине-зеленых водорослей пластид еще нет, их роль выполняет окрашенная часть протоплазмы, прилегающая к оболочке. Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд). Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза.

Химический состав хлоропластов достаточно сложен и характеризуется высоким (75 %) содержанием воды. Около 75-80 % общего количества сухих веществ приходится на долю различных органических соединений, 20-25 % - на долю минеральных веществ. Структурной основой хлоропластов являются белки, содержание которых достигает 50-55 % сухой массы, примерно половина из них водорастворимые. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов. Это структурные белки, являющиеся основой мембран, белки-ферменты, транспортные белки, поддерживающие определенный ионный состав, отличающийся от цитозоля, сократительные белки, подобные актомиозину мышц, которые обеспечивают двигательную активность хлоропластов. Белки выполняют также рецепторную функцию, принимая участие в регуляции интенсивности фотосинтеза в меняющихся условиях внутренней и внешней среды.

Важнейшей составной частью хлоропластов являются липиды, содержание которых колеблется от 30 до 40 % сухой массы. Липиды хлоропластов представлены тремя группами соединений.

Углеводы не являются конституционными веществами хлоропласта. В очень небольших количествах фосфорные эфиры сахаров участвуют в восстановительном цикле углерода, в основном же это продукты фотосинтеза. Поэтому содержание углеводов в хлоропластах колеблется значительно (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накапливаются, происходит их быстрый отток. При уменьшении потребности в продуктах фотосинтеза в хлоропластах образуются крупные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

В хлоропластах высокое содержание минеральных веществ. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % железа, 70-72 % - магния и цинка, около 50 % - меди, 60 % кальция, содержащихся в тканях листа. Эти данные хорошо согласуются с высокой и разнообразной ферментативной активностью хлоропластов. Минеральные элементы выступают в роли простетических групп и кофакторов деятельности ферментов. Магний входит в состав хлорофилла. Важная роль кальция заключается в стабилизации мембранных структур хлоропластов.

Строение хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция - матрикс, или строма, которую пронизывают мембраны - ламеллы . Ламеллы, соединенные друг с другом, образуют пузырьки - тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей - тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.

Рис.1. Строение хлоропласта

1 - внешняя мембрана; 2 - внутренняя мембрана; 3 - крахмальное зерно; 4 - ДНК; 5 - тилакоиды стромы (фреты); 6 - тилакоид граны; 7 - матрикс (строма)

Строение зрелых хлоропластов одинаково у всех высших растений, как и в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов - фоторегуляция устьичных движений. Этот процесс обеспечивается энергией высокоструктурированными митохондриями. Хлоропласты содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы, что свидетельствует об их низкой энергетической нагрузке.

С возрастом строение хлоропластов существенно меняется. Молодые хлоропласты характеризуются ламеллярной структурой, в таком состоянии хлоропласты способны размножаться делением. В зрелых хлоропластах хорошо выражена система гран. В стареющих хлоропластах происходит разрыв тилакоидов стромы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов, в которых каротиноиды сосредоточены в пластоглобулах.

Физиологические особенности хлоропластов

Важным свойством хлоропластов является их способность к движению. Хлоропласты передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоролластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения Хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической.

Основная функция хлоропластов - это процесс фотосинтеза. В 1955 г. Д. Арнон показал, что в изолированных хлоронпластах может быть осуществлен весь процесс фотосинтеза. Важно отметить, что хлоропласты имеются не только в клетках листа. Они встречаются в клетках не специализирующихся на фотосинтезе органов: в стеблях, колосковых чешуйках и остях колосьев, корнеплодах, клубнях картофеля и т. д. В ряде случаев зеленые пластиды обнаруживаются в тканях, расположенных не в наружных, освещенных частях растений, а в слоях, удаленных от света, в тканях центрального цилиндра стебля, в средней части луковицы лилейных, а также в клетках зародыша семени многих покрытосеменных растений. Последнее явление (хлорофиллоносность зародыша) привлекает внимание систематиков растений. Имеются предложения разделить все покрытосеменные растения на две большие группы: хлороомбриофиты и лейкоэмбриофиты, т. е. содержащие и не содержащие хлоропласты в зародыше (Яковлев). Исследования показали, что структура хлоропластов, расположенных в других органах растения, так же как и состав пигментов, сходны с хлоропластами листа. Это дает основания считать, что они способны к фотосинтезу.

В том случае, если они подвергаются освещению, по-видимому, в них действительно происходит фотосинтез. Так, фотосинтез хлоропластов, расположенных в остях колоса, может составлять около 30% от общего фотосинтеза растения. Позеленевшие на свету корни способны к фотосинтезу. В хлоропластах, находящихся, в кожуре плода до определенного этапа его развития, также может идти фотосинтез. Согласно предположению А. Л. Курсанова, хлоропласты, расположенные вблизи проводящих путей, выделяя кислород, способствуют повышению интенсивности обмена веществ ситовидных трубок. Вместе с тем роль хлоропластов не ограничивается их способностью к фотосинтезу. В определенных случаях они могут служить источником питательных веществ (Е. Р. Гюббенет). Хлоропласты содержат большее количество витаминов, ферментов и даже фитогормонов (в частности, гиббереллина). В условиях, при которых ассимиляция исключена, зеленые пластиды могут играть активную роль в процессах обмена веществ.



Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Строение хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция - матрикс, или строма, которую пронизывают мембраны - ламеллы. Ламеллы, соединенные друг с другом, образуют пузырьки - тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей - тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.

Химический состав хлоропластов: воды - 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы), половина из них составляют водорастворимые белки. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные). Важнейшей составной частью хлоропластов являются липиды, (30-40%сух. м.).

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

· хлорофилл:
- хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);
- хлорофилл В (желто-зеленый) - 30 % (там же);
- хлорофилл С, D и E встречается реже - у других групп водорослей;

· каротиноиды:
- оранжево-красные каротины (углеводороды);
- желтые (реже красные) ксантофиллы (окисленные каротины). Благодаря ксантофиллу фикоксантину хлоропласты бурых водорослей (феопласты) окрашены в коричневый цвет;

· фикобилипротеиды, содержащиеся в родопластах (хлоропластах красных и сине-зеленых водорослей):
- голубой фикоцианин;
- красный фикоэритрин.

Хлоропласт имеет собственную ДНК, то есть собственный геном и собственным аппаратом реализации генетической информации путем синтеза РНК и белка.

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

Ферредоксин затем вновь окисляется, отдавая этот водород веществу-восстановителю, сокращенно обозначаемому НАДФ. НАДФ переходит в восстановленную форму - НАДФ-H2. Таким образом, итогом световых реакций фотосинтеза является образование АТФ, НАДФ-H2 и кислорода, причем потребляются вода и энергия света.

В АТФ аккумулируется много энергии - она затем используется для синтезов, а также для других нужд клетки. НАДФ-H2 - аккумулятор водорода, причем легко его затем отдающий. Следовательно, НАДФ-H2 является химическим восстановителем. Большое число биосинтезов связано именно с восстановлением, и в качестве поставщика водорода в этих реакциях выступает НАДФ-H2.

Далее, с помощью ферментов стромы хлоропластов, т. е. вне гран, протекают темновые реакции: водород и энергия, заключенная в АТФ, используются для восстановления атмосферного углекислого газа (CO2) и включения его при этом в состав органических веществ. Первое органическое вещество, образующееся в результате фотосинтеза, подвергается большому числу перестроек и дает начало всему многообразию органических веществ, синтезирующихся в растении и составляющих его тело. Ряд из этих превращений происходит тут же, в строме хлоропласта, где имеются ферменты для образования Сахаров, жиров, а также все необходимое для синтеза белка. Сахара могут затем либо перейти из хлоропласта в другие структуры клетки, а оттуда в другие клетки растения, либо образовать крахмал, зерна которого часто можно видеть в хлоропластах. Жиры тоже откладываются в хлоропластах или в виде капель, или в форме более простых веществ, предшественников жиров, выходят из хлоропласта.

Хлоропласты обладают известной автономией в системе клетки. В них имеются собственные рибосомы и набор веществ, определяющих синтез ряда собственных белков хлоропласта. Имеются также ферменты, работа которых приводит к образованию липидов, входящих в состав ламелл, и хлорофилла. Как мы видели, хлоропласт располагает и автономной системой добывания энергии. Благодаря всему этому хлоропласты способны самостоятельно строить собственные структуры. Существует даже взгляд, что хлоропласты (как и митохондрии) произошли от каких-то низших организмов, поселившихся в растительной клетке и сперва вступивших с нею в симбиоз, а затем ставших ее составной частью, органоидом.

Пластиды - органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды - лейкопласты ;
  • окрашенные - хлоропласты (зеленого цвета);
  • окрашенные - хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга - лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов - в хромопласты.

Строение и функции хлоропластов

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент - хлорофилл.

Основная функция хлоропласт - фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца - граны и мембранные каналы.


Граны (размером около 1мкм) - пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.


В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные - a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов - зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые - бактериохлорофилл b, зеленые бактерии - c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл - единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях - поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты - это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Имеющий сложное строение и содержащий хлорофилл, обеспечивающий процесс фотосинтеза.

Навигация по статье

Данный органоид присутствует только у растений. Хлоропласты имеют форму двояковыпуклой линзы, в результате чего на листья поступает больше света. Покрыты наружной мембраной. Это мембрана гладкая, по сравнению с внутренней. Внутри находятся тилокоиды.

Благодаря дисковидным тилокоидам образуются граны, которые различимы только под микроскопом, а благодаря трубковидным тилокоидам образуется строма, которая соединяет все образовавшиеся граны в одну систему. Количество гран в хлоропластах составляет приблизительно 40-60 единиц. Граны объединяются между собой с помощью межгранных тяжей.

В строме содержится ДНК, рибосомы, РНК. В мембране тилокоид содержится вещество, от которого зависит цвет листьев. Хлорофилл (зелёный) и каротиноиды (красный, оранжевый, желтый).

Именно благодаря хлорофиллу в клетках растений осуществляется процесс фотосинтеза.

Существует 4 вида холорофилла, в зависимости от строения: a, b, c и d. Тип а и б содержат все растения на суше и зеленые водоросли. А и С- диатомовые водоросли, а и d – красные.

Хлоропласты состоят из нескольких структур: тилакоидов, гран, мембраны

Функции хлоропластов

В хлоропластах происходит фотосинтез – процесс преобразования солнечной энергии в кислород. Хлоропласты способны перемещаться в цитоплазме клеток. За счет этого молекулы хлорофилла получают максимальное количество солнечной энергии для осуществления функции фотосинтеза.

Фотосинтез является основным процессом, вследствие которого на нашей планете образуется кислород и органические вещества.

Без фотосинтеза не было бы растений и кислорода, а без них и животных, в том числе невозможно было бы существование человека.

Еще одной функцией хлоропластов является фиксация углекислоты и встраивание углерода в состав органических веществ. Такой процесс называется реакция Кальвина-Бенсона, в честь ученых, открывших ее.


В конце жизненного цикла органоида, хлорофилл начинает разрушаться, функции растительных клеток нарушаются. Это также может происходить из-за изменения светового дня и резкого понижения температуры окружающей среды. Часть хлоропластов становятся

Растительный мир - одно из главных богатств нашей планеты. Именно благодаря флоре на Земле есть кислород, которым мы все дышим, имеется огромная пищевая база, от которой зависит все живое. Растения уникальны тем, что могут превращать химические соединения неорганической природы в органические вещества.

Делают они это посредством фотосинтеза. Этот важнейший процесс протекает в специфических растительных органоидах, мельчайший элемент фактически обеспечивает существование всей жизни на планете. Кстати, а что такое хлоропласт?

Основное определение

Так называются специфические структуры, в которых происходят процессы фотосинтеза, которые направлены на связывание углекислого газа и образование некоторых углеводов. Побочным продуктом является кислород. Это вытянутые в длину органоиды, достигающие в ширину 2-4 мкм, длина их доходит до 5-10 мкм. У некоторых видов порой встречаются хлоропласты-гиганты, вытянутые на 50 мкм!

У этих же водорослей может быть другая особенность: на всю клетку у них имеется только один органоид этого вида. В клетках чаще всего имеется в пределах 10-30 хлоропластов. Впрочем, и в их случае могут встречаться яркие исключения. Так, в палисадной ткани обычной махорки имеется по 1000 хлоропластов на одну клетку. Для чего нужны эти хлоропласты? Фотосинтез - вот их главная, но далеко не единственная роль. Чтобы четко понимать их значение в жизни растения, важно знать многие аспекты их происхождения и развития. Все это описывается в дальнейшей части статьи.

Происхождение хлоропласта

Итак, что такое хлоропласт, мы узнали. А откуда эти органоиды произошли? Как получилось, что у растений появился столь уникальный аппарат, который превращает углекислый газ и воду в сложные

В настоящее время среди ученых превалирует точка зрения об эндосимбиотическом происхождении данных органоидов, так как их самостоятельное возникновение в клетках растения довольно сомнительно. Отлично известно, что лишайник - это симбиоз водоросли и гриба. при этом живут внутри Сейчас ученые предполагают, что в незапамятные времена фотосинтезирующие цианобактерии проникли внутрь а затем частично утратили «самостоятельность», передав большую часть генома в ядро.

Но свою главную особенность новый органоид сохранил в полной мере. Речь идет как раз о процессе фотосинтеза. Впрочем, сам аппарат, необходимый для выполнения данного процесса, формируется под контролем как клеточного ядра, так и самого хлоропласта. Так, деление этих органоидов и прочие процессы, связанные с реализацией генетической информации на ДНК, контролируются ядром.

Доказательства

Относительно недавно гипотеза о прокариотическом происхождении этих элементов была не слишком популярна в научном сообществе, многие считали ее «измышлениями дилетантов». Но после того как был проведен углубленный анализ нуклеотидных последовательностей в ДНК хлоропластов, это предположение получило блестящее подтверждение. Выяснилось, что эти структуры чрезвычайно схожи, даже родственны, ДНК бактериальных клеток. Так, аналогичная последовательность была найдена у свободноживущих цианобактерий. В частности, оказались чрезвычайно схожи гены АТФ-синтезирующего комплекса, а также в «аппаратах» транскрипции и трансляции.

Промоторы, которые определяют начало считывания генетической информации с ДНК, а также терминальные нуклеотидные последовательности, которые отвечают за ее прекращение, также организованы по образу и подобию бактериальных. Разумеется, миллиарды лет эволюционных преобразований смогли внести множество изменений в хлоропласт, но последовательности в хлоропластных генах остались абсолютно прежними. И это - неопровержимое, полное доказательство того, что хлоропласты и в самом деле когда-то имели прокариотического предка. Возможно, это был организм, от которого произошли также современные цианобактерии.

Развитие хлоропласта из пропластиды

«Взрослый» органоид развивается из пропластиды. Это маленькая, полностью бесцветная органелла, имеющая всего несколько микрон в поперечнике. Она окружена плотной двуслойной мембраной, которая содержит кольцевую ДНК, специфическую для хлоропласта. Внутренней мембранной системы эти «предки» органоидов не имеют. Из-за предельно малых размеров их изучение крайне затруднено, а потому данных об их развитии чрезвычайно мало.

Известно, что несколько таких протопластид имеется в ядре каждой яйцеклетки животных и растений. В ходе развития зародыша они делятся и передаются другим клеткам. Это легко проверить: генетические признаки, которые так или иначе связаны с пластидами, передаются только по материнской линии.

Внутренняя мембрана протопластиды за время развития выпячивается внутрь органоида. Из этих структур вырастают мембраны тилакоидов, которые отвечают за образование гран и ламелл стромы органоида. В полной темноте протопастида начинает преобразовываться в предшественник хлоропласта (этиопласта). Этот первичный органоид характерен тем, что внутри него располагается довольно сложная кристаллическая структура. Как только на лист растения попадет свет, она полностью разрушается. После этого происходит образование «традиционной» внутренней структуры хлоропласта, которая образована как раз-таки тилакоидами и ламеллами.

Отличия растений, запасающих крахмал

В каждой меристемальной клетке содержится несколько таких пропластид (их количество разнится в зависимости от вида растения и прочих факторов). Как только эта первичная ткань начинает преобразовываться в лист, предшественники органоидов превращаются в хлоропласты. Так, закончившие свой рост молодые листья пшеницы имеют хлоропласты в количестве 100-150 штук. Чуть сложнее обстоят дела в отношении тех растений, которые способны к накоплению крахмала.

Они скапливают запас этого углевода в пластидах, которые именуются амилопластами. Но какое отношение эти органоиды имеют к теме нашей статьи? Ведь клубни картофеля не участвуют в фотосинтезе! Позвольте разъяснить этот вопрос более подробно.

Мы выяснили, что такое хлоропласт, попутно выявив связь этого органоида со структурами прокариотических организмов. Здесь ситуация схожа: ученые давно выяснили, что амилопласты, как и хлоропласты, содержат точно такую же ДНК и образуются из точно тех же протопластид. Следовательно, и рассматривать их следует в том же аспекте. Фактически амилопласты следует рассматривать в качестве особой разновидности хлоропласта.

Как образуются амилопласты?

Можно провести аналогию между протопластидами и стволовыми клетками. Проще говоря, амилопласты с какого-то момента начинают развиваться по несколько иному пути. Ученые, впрочем, узнали кое-что любопытное: им удалось добиться взаимного превращения хлоропластов из листьев картофеля в амилопласты (и наоборот). Каноничный пример, известный каждому школьнику - клубни картофеля на свету зеленеют.

Прочие сведения о путях дифференцирования этих органоидов

Мы знаем, что в процессе созревания плодов томата, яблок и некоторых других растений (и в листьях деревьев, трав и кустарников в осенний период) происходит процесс «деградации», когда хлоропласты в растительной клетке превращаются в хромопласты. Эти органоиды содержат в своем составе красящие пигменты, каротиноиды.

Превращение это связано с тем, что в определенных условиях происходит полное разрушение тилакоидов, после чего органелла приобретает иную внутреннюю организацию. Вот здесь-то мы снова возвращаемся к тому вопросу, который начали обсуждать в самом начале статьи: влияние ядра на развитие хлоропластов. Именно оно, посредством особых белков, которые синтезируются в цитоплазме клеток, инициирует процесс перестройки органоида.

Строение хлоропласта

Поговорив о вопросах происхождения и развития хлоропластов, следует подробнее остановиться на их строении. Тем более что оно весьма интересно и заслуживает отдельного обсуждения.

Основная структура хлоропластов состоит из двух липопротеиновых мембран, внутренней и внешней. Толщина каждой составляет порядка 7 нм, расстояние между ними - 20-30 нм. Как и в случае других пластид, внутренний слой образует особые структуры, выпячивающиеся внутрь органоида. У зрелых хлоропластов существует сразу два типа таких «извилистых» мембран. Первые образуют ламеллы стромы, вторые - мембраны тилакоидов.

Ламеллы и тилакоиды

Нужно заметить, что прослеживается четкая связь, которую имеет мембрана хлоропластов с аналогичными образованиями, находящимися внутри органоида. Дело в том, что некоторые ее складки могут простираться от одной стенки до другой (как у митохондрий). Так что ламеллы могут образовывать либо своеобразный «мешок», либо разветвленную сеть. Впрочем, чаще всего эти структуры располагаются параллельно друг другу и никак не связаны между собой.

Не стоит забывать, что внутри хлоропласта находятся еще и мембранные тилакоиды. Это замкнутые «мешки», которые располагаются в виде стопки. Как и в предыдущем случае, между двумя стенками полости имеется расстояние в 20-30 нм. Столбики из этих «мешков» называются гранами. В каждом столбике может находиться до 50 тилакоидов, а в некоторых случаях их бывает еще больше. Так как общие «габариты» таких стопок могут достигать 0,5 мкм, иногда они могут быть обнаружены при помощи обыкновенного светового микроскопа.

Общее количество гран, которые содержатся в хлоропластах высших растений, может доходить до 40-60. Каждый тилакоид так плотно прилегает к другому, что их внешние мембраны образуют единую плоскость. Толщина слоя в месте соединения может доходить до 2 нм. Заметим, что подобные структуры, которые образованы прилегающими друг к другу тилакоидами и ламеллами, совсем нередки.

В местах их соприкосновения также имеется слой, достигающий порой тех же самых 2 нм. Таким образом, хлоропласты (строение и функции которых весьма сложны) представляют собой не единую монолитную структуру, а своеобразное «государство внутри государства». В некоторых аспектах строение этих органоидов не менее сложно, чем вся клеточная структура!

Граны связываются между собой именно при помощи ламелл. Но полости тилакоидов, которые образуют стопки, всегда замкнуты и никак не сообщаются с межмембранным пространством. Как видите, структура хлоропластов достаточно сложна.

Какие пигменты могут содержаться в хлоропластах?

Что может содержаться в строме каждого хлоропласта? Там имеются отдельные молекулы ДНК и немало рибосом. У амилопластов именно в строме откладываются крахмальные зерна. Соответственно, у хромопластов там имеются красящие пигменты. Разумеется, встречаются различные пигменты хлоропластов, но наиболее распространенным является хлорофилл. Он подразделяется сразу на несколько видов:

  • Группа А (сине-зеленый). Встречается в 70% случаев, содержится в хлоропластах всех высших растений и водорослей.
  • Группа В (желто-зеленый). В остальных 30% также обнаруживается у растений и водорослей высших видов.
  • Группы С, D и Е встречаются намного реже. Имеются в хлоропластах некоторых видов низших водорослей и растений.

У красных и бурых морских водорослей в хлоропластах не так уж и редко могут иметься совершенно другие виды органических красителей. В некоторых же водорослях вообще содержатся едва ли не все существующие пигменты хлоропластов.

Функции хлоропластов

Разумеется, основной их функцией является преобразование световой энергии в органические компоненты. Сам фотосинтез происходит в гранах при непосредственном участии хлорофилла. Он поглощает энергию солнечного света, переводя ее в энергию возбужденных электронов. Последние, обладая избыточным ее запасом, отдают излишки энергии, которая используется для разложения воды и синтеза АТФ. При распаде воды образуется кислород и водород. Первый, как мы уже писали выше, является побочным продуктом и выделяется в окружающее пространство, а водород связывается с особым белком, ферредоксином.

Он снова окисляется, передавая водород восстановителю, который в биохимии обозначается аббревиатурой НАДФ. Соответственно, его восстановленная форма - НАДФ-H2. Проще говоря, в процессе фотосинтеза происходит выделение следующих веществ: АТФ, НАДФ-H2 и побочного продукта в виде кислорода.

Энергетическая роль АТФ

Образующаяся АТФ крайне важна, так как является основным «аккумулятором» энергии, которая идет на различные нужды клетки. НАДФ-H2 содержит восстановитель, водород, причем это соединение способно легко его отдавать в случае необходимости. Проще говоря, это эффективный химический восстановитель: в процессе фотосинтеза происходит множество реакций, которые без него попросту не смогут протекать.

Далее в дело вступают ферменты хлоропластов, которые действуют в темноте и вне гран: водород из восстановителя и энергия АТФ используются хлоропластом для того, чтобы начать синтез ряда органических веществ. Так как фотосинтез происходит в условиях хорошей освещенности, накопленные соединения в темное время суток используются для нужд самих растений.

Вы справедливо можете заметить, что этот процесс в некоторых аспектах подозрительно похож на дыхание. Чем отличается от него фотосинтез? Таблица поможет вам разобраться в этом вопросе.

Пункты сравнения

Фотосинтез

Дыхание

Когда происходит

Только днем, при солнечном свете

В любое время

Где протекает

Все живые клетки

Кислород

Выделение

Поглощение

Поглощение

Выделение

Органические вещества

Синтез, частичное расщепление

Только расщепление

Энергия

Поглощается

Выделяется

Вот чем отличается от дыхания фотосинтез. Таблица наглядно показывает основные их различия.

Некоторые «парадоксы»

Большая часть дальнейших реакций протекает тут же, в строме хлоропласта. Дальнейший путь синтезированных веществ различен. Так, простые сахара сразу выходят за пределы органоида, накапливаясь в других частях клетки в виде полисахаров, прежде всего - крахмала. В хлоропластах происходит как отложение жиров, так и предварительное накопление их предшественников, которые затем выводятся в другие области клетки.

Следует четко понимать, что все реакции синтеза требуют колоссального количества энергии. Единственным ее источником является все тот же фотосинтез. Это процесс, который зачастую требует столько энергии, что ее приходится получать, разрушая вещества, образованные в результате предыдущего синтеза! Таким образом, большая часть энергии, которая получается в его ходе, затрачивается на проведение множества химических реакций внутри самой растительной клетки.

Лишь некоторая ее доля используется для непосредственного получения тех органических веществ, которые растение берет для собственного роста и развития либо откладывает в форме жиров или углеводов.

Статичны ли хлоропласты?

Принято считать, что клеточные органоиды, в том числе и хлоропласты (строение и функции которых нами подробно расписаны), находятся строго в одном месте. Это не так. Хлоропласты могут перемещаться по клетке. Так, на слабом свету они стремятся занять положение близ наиболее освещенной стороны клетки, в условиях средней и слабой освещенности могут выбирать некие промежуточные положения, при которых удается «поймать» больше всего солнечного света. Это явление получило название «фототаксис».

Для растений оно очевидно - это синтез энергии и веществ, которые используются растительными клетками. Но фотосинтез - это процесс, который обеспечивает постоянное накопление органического вещества в масштабах всей планеты. Из углекислого газа, воды и солнечного света хлоропласты могут синтезировать огромное количество сложнейших высокомолекулярных соединений. Эта способность характерна только для них, и человек пока далек от повторения этого процесса в искусственных условиях.

Вся биомасса на поверхности нашей планеты обязана своим существованием этим мельчайшим органоидам, которые находятся в глубинах растительных клеток. Без них, без проводимого ими процесса фотосинтеза на Земле не было бы жизни в ее современных проявлениях.

Надеемся, вы узнали из этой статьи о том, что такое хлоропласт и какова его роль в растительном организме.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то