Порядок и беспорядок в теории хаоса. Психология. Теория хаоса. Теория хаоса о беспорядке

Теория хаоса (chaos), она же теория нелинейных динамических систем, в последнее время является одним из самых модных подходов к исследованию рынка. К сожалению, точного математического определения понятия хаос пока не существует. Сейчас зачастую хаос определяют как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, возникающую в динамической системе.
Согласно теории хаоса, в мире вместе царят случайность и порядок. Они неразлучны, как добро и зло, как левое и правое.


Следует отметить, что хаос не случаен, несмотря на свойство непред-сказуемости. Более того, хаос динамически детерминирован (определен). На первый взгляд непредсказуемость граничит со случайностью - ведь мы, как правило, не можем предсказать как раз случайные явления. И ес-ли относиться к рынку, как к случайным блужданиям, то это тот самый случай. Однако хаос не случаен, он подчиняется своим закономерностям. Согласно теории хаоса, если вы говорите о хаотичном движении цены, то вы должны иметь в виду не случайное движение цены, а другое, осо-бенно упорядоченное движение. Если динамика рынка хаотична, то она не случайна, хотя и по-прежнему непредсказуема.
Непредсказуемость хаоса объясняется в основном существенной зависимостью от начальных условий. Такая зависимость указывает на то, что даже самые малые ошибки при измерении параметров исследуемого объекта могут привести к абсолютно неверным предсказаниям. Эти ошибки могут возникать и вследствие элементарного незнания всех начальных условий. Что-то обязательно ускользнет от нашего внимания, а значит, уже в самой постановке задачи будет заложена внутренняя ошибка, которая приведет к существенным погрешностям в предсказаниях. Применительно к невоз-можности делать долгосрочные прогнозы погоды существенную зависимость от начальных условий иногда называют «эффектом бабочки». «Эф-фект бабочки» указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе.
Дополнительные неточности в результаты исследований и расчетов могут вносить самые на первый взгляд незаметные факторы воздействия на систему, которые появляются в период ее существования с начального момента до появления фактического и окончательного результата. При этом факторы воздействия могут быть как экзогенными, так и эндогенными.
Ярким примером хаотического поведения является движение бильярдного шара. Если вы когда-либо играли в бильярд, то знаете, что от начальной точности удара, его силы, положения кия относительно шара, оценки месторасположения шара, по которому наносится удар, а также расположения других шаров, находящихся на столе, зависит конечный результат. Малейшая неточность в одном из этих факторов приводит к самым непредсказуемым последствиям - шар может покатиться совсем не туда, куда планировал игрок. Более того, даже если игрок все сделал правильно и фантастически удачно, попробуйте предсказать движения шара после пяти-шести столкновений.
Рассмотрим еще один пример влияния начальных условий на конечный результат. Представим себе, например, камень на вершине горы. Стоит его чуть-чуть подтолкнуть, и он покатится вниз. Однако совсем малое изменение силы толчка и его направления может привести к очень значительному изменению места остановки камня у подножия горы. Есть, правда, одна очень существенная разница между движением камня и по-ведением хаотической системы. В первом факторы воздействия на камень во время падения с горы (ветер, препятствия, изменения внутренней структуры вследствие столкновений и т.п.) не оказывают сильного влияния на конечный результат по сравнению с начальными условиями. В хаотических системах малые изменения оказывают значительное воздействие на результат не только в начальных условиях, но и в любой другой момент времени.
Один из главных выводов теории хаоса, таким образом, заключается в следующем - будущее предсказать невозможно, так как всегда будут ошибки измерения, порожденные в том числе и незнанием всех факторов и условий.
Иными словами, малые изменения и/или ошибки рождают большие последствия.
Сколько бы не начинали считать - результат практически всегда будет разным (рис. 6.3). При этом совпадение результатов будет встречаться тем реже, чем дальше в будущее мы смотрим. Это не относится к точным математическим формулам, а отражает жизненную парадигму теории хаоса. Есть хорошая пословица, характеризующая такую формулировку теоретического постулата: «В одну реку нельзя войти дважды».
Еще одним из основных свойств хаоса является экспоненциальное накопление ошибки. Согласно законам квантовой механики начальные условия всегда неопределенны, а согласно теории хаоса эти неопределен-ности будут быстро прирастать и превысят допустимые пределы предска-зуемости.


tttt
Следовательно, я не могу точно предсказать будущее, а только предполагаю
Я не знаю всех начальных условий
Я не знаю всех факторов воздействия
Время >
Т(0)
Т(п)
Т(1)...Т(п-1)
Рис. 6.3. Существенная зависимость результата от начальных условий и факторов воздействия.
Второй вывод теории хаоса: достоверность прогнозов со временем быстро падает (рис. 6.4). Этот вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями.



Время
Обычно говорят, что хаос является более высокой формой порядка, но более правильно считать хаос совсем иной формой порядка - с не-избежностью в любой динамической системе за порядком (в обычном его понимании) следует хаос, а за хаосом - порядок. Если мы определим хаос как беспорядок, то в таком беспорядке мы обязательно сможем увидеть свою особую форму порядка. Например, дым от сигареты, сначала поднимающийся в виде упорядоченного столба, под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными. Еще один пример хаотичности в природе - лист с любого дерева. Можно утверждать, что вы найдете много похожих листьев, например дуба, однако ни одной пары одинаковых
листьев. Разница предопределена температурой, ветром, влажностью и другими внешними факторами, а также чисто внутренними причинами (такими, как, например, генетическая разница).
Движение от порядка к хаосу и обратно, по всей видимости, является сутью Вселенной, какие бы проявления ее мы не изучали. Даже в челове-ческом мозгу одновременно присутствует упорядоченное и хаотическое начала. Первое соответствует левому полушарию мозга, а второе - пра-вому. Левое полушарие отвечает за сознательное поведение человека, за выработку линейных правил и стратегий в поведении, где четко определяется «если..., то...». В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга.
Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.
Первые элементы теории хаоса появились еще в XIX в., однако под-линное научное развитие эта теория получила во второй половине XX в., вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit В. Mandelbrot).
Эдвард Лоренц в свое время (начало 60-х годов XX в., работа опубликована в 1963 г.) рассматривал, в чем возникает трудность при прогнози-ровании погоды.
До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.
Первый подход сформулировал еще в 1776 г. французский математик Пьер Симон Лаплас (Laplas), который заявил:
...если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем.
Этот его подход был очень похож на известные слова Архимеда: «Дайте мне точку опоры, и я переверну весь мир». Таким образом, Лаплас и его сторонники утверждали, что для точного прогнозирования необходи-мо собрать как можно больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз.
Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик - Жюль Анри Пуанкаре (Роіпсаге). В 1903 г. он заявил:
Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда смогли бы узнать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так: малые различия в начальных условиях могут вызвать очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в по-следнем. Предсказание становится невозможным, и мы имеем дело с яв-лением, которое развивается по воле случая.
В этих словах Пуанкаре мы находим постулат теории хаоса о зависи-мости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа.
В 1927 г. немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы ни собирали о ядре, точно предсказать, когда это ядро распа-дется, невозможно.
Какими же инструментами располагает теория хаоса? В первую оче-редь это аттракторы и фракталы.
Аттрактор (от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по про-шествии длительного времени. Можно также сказать, что аттрактор - это предел системы, предел ее колебаний и динамики.
Здесь возникает необходимость определить понятие фазового простран-ства. Итак, фазовое пространство - это абстрактное пространство, ко-ординатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и его положением. Если движению маятника не оказывать сопротивления, то фазовым пространством будет замкнутый круг. В реальности на Земле на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль (рис. 6.5).


.
Иными словами, аттрактор - это область решений, то, к чему стре-мится прийти система, к чему она притягивается.
Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения маятник всегда придет в состояние покоя, т.е. в точку.
Следующим типом аттрактора можно назвать предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора будет маятник, на который не влияет сила трения.
Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стре-мится к своему аттрактору, своей замкнутой кривой.
Третий тип аттрактора - тор. На рис. 6.6 тор показан в верхнем пра-вом углу.
Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его. И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы.
Первым хаотическим аттрактором стал аттрактора Лоренца (в левом нижнем углу на рис. 6.6 и во всей своей красе на рис. 6.7).
Аттрактор Лоренца рассчитан на основе всего трех степеней сво-боды - три обыкновенных дифференциальных уравнения, три кон-станты и три начальных условия. Однако, несмотря на свою просто-ту, система Лоренца ведет себя псевдослучайным (хаотическим) образом.




Br />Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже мик-роскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответст-венно их стохастическому расхождению.
Вместе с тем любой аттрактор имеет граничные размеры, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее малове-роятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов.
Сходимость-расходимость (говорят также складывание и вытягивание соответственно) хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой. При схождении траектории сближаются и начинает проявляться эффект близорукости - возрастает неоп-ределенность крупномасштабной информации. При расхождении траекторий все наоборот - они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации.
В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что лишает нас возмож-ности делать точные прогнозы. То, чем так гордится наука, -- способность устанавливать связи между причинами и следствиями - в хаотических системах невозможно. Причинно-следственной связи между прошлым и будущем в хаосе нет.
Необходимо отметить, что скорость схождения-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора.
Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимость- расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются.
Здесь проявляется пересечение фрактальной геометрии и теории хаоса. И, хотя одним из инструментов теории хаоса является фрактальная геометрия, которая позволяет путем применения простых правил полу-чать сложные фигуры, фрактал - это противоположность хаоса.
Главное различие между хаосом и фракталом заключается в том, что первый является динамическим явлением, а фрактал - статическим. Под динамическим свойством хаоса понимается непостоянное и непериоди-ческое изменение траекторий.

Теория хаоса

Диаграмма раздвоения логистической карты, где x → r x (1 - x). Каждый вертикальный сектор показывает аттрактор определённого значения r. Диаграмма отображает удвоение периода когда r увеличивается, что в конечном итоге производит хаос

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос . Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной .

Примерами подобных систем являются атмосфера , турбулентные потоки , биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием , эффект Коновала - распределение частот выпадения положительных результатов, или принятия правильных решений.

Теория хаоса - область исследований, связывающая математику и физику.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Хронология

Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбуленция и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбуленцией в жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина . Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную непрактично. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из пионеров в теории хаоса был Эдвард Лоренц , интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз.

К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде. Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта. Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя », который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа » в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.

Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

Турбулентные потоки воздуха от крыла самолета, образующиеся во время его посадки. Изучение критической точки, после которой система создает турбулентность, были важны для развития теории Хаоса. Например, советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года. В декабре 1977 Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу , Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц . В следующем году, Митчелл Феидженбом издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. М. Феидженбом применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям. В 1979 Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике вместе с Митчеллом Дж. Фейгенбаумом в 1986 «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах ». Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов . В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию . Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т.д.).

Применение

Теория хаоса применяется во многих научных дисциплинах: математика, биология, информатика, экономика, инженерия, финансы, философия, физика, политика, психология и робототехника. В лаборатории хаотическое поведение можно наблюдать в разных системах, например электрические схемы , лазеры, химические реакции, динамика жидкостей и магнитно-механических устройств. В природе хаотическое поведение наблюдается в движении спутников солнечной системы , эволюции магнитного поля астрономических тел, приросте населения в экологии, динамике потенциалов в нейронах и молекулярных колебаниях . Есть сомнения о существовании динамики хаоса в тектонике плит и в экономике.

Одно из самых успешных применений теории хаоса было в экологии, когда динамические системы похожие на модель Рикера использовались, чтобы показать зависимость прироста населения от его плотности. В настоящее время теория хаоса также применяется в медицине при изучении эпилепсии для предсказаний приступов, учитывая первоначальное состояние организма. Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей. Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. выбрать тестируемое состояние;
  2. найти несколько подобных или почти подобных состояний; и
  3. сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т.д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Содержание статьи

ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система . Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.

Основные принципы.

Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны , когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.

Исследования хаотических систем время от времени появлялись и в литературе по прикладным вопросам. Наиболее известная из таких моделей была введена метеорологом Э.Лоренцем в 1963. Лоренц построил модель конвекции в атмосфере, создав приближения очень сложных уравнений, описывающих это явление, значительно более простыми уравнениями с тремя неизвестными. Численно решая их на компьютере, он обнаружил, что решения колеблются нерегулярным, почти случайным образом. Лоренц также установил, что если слегка изменять начальные значения переменных, то отклонения будут усиливаться, пока новое решение не окажется совершенно непохожим на исходное. Описание им этого явления в последующих лекциях привело к популярному ныне выражению «эффект бабочки»: взмах крыла бабочки может изменить погоду.

Примеры приложений.

Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически. Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е. период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки). В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична. Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет. Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Энциклопедичный YouTube

    1 / 5

    ✪ Тайна теории хаоса раскрыта!

    ✪ 15x4 - 15 минут о теории хаоса

    ✪ Илья Щуров. Бифуркации, катастрофы и хаос

    ✪ Veritasium #1 Что НЕ является Случайностью?

    ✪ Теория струн для чайников

    Субтитры

    всем привет меня зовут артур шарифов и вы смотрите мое новое видео на канале кверти как я сюда попал буквально откуда я пришел слева может быть справа может я вообще сидел на корточках и просто привстал вы затрудняетесь ответить ведь то что вы видите это лишь результат это конечная точка а конечная точка чего можно вообразить себе много разных вариантов развития событий при которых я оказался бы там где я оказался теория хаоса пытается дать ответы на подобного рода вопросы но она немного уходит в сторону хитрит куда проще и как оказалось куда полезней дать ответ на вопрос а что могло бы помешать мне здесь оказался все что угодно любое даже самое незначительное изменение в прошлом неминуемо привело бы к тому что я бы здесь не оказался это явление называется эффект бабочки это одно из ключевых свойств хаотичных систем теория хаоса на самом деле занимается изучением неистинного хауса неполного беспорядков хаотичная система в данном контексте тоже упорядочена причинно- следственная связь присутствует только вот управлять такой системой становится практически невозможно давайте рассмотрим вот такой пример расстояние от деревни горшки до парижа который в челябинской области 100 километров я выезжаю из горшков в париж и еду со скоростью 50 километров час через сколько часов я доеду до парижа решаем задачку если я за один час проезжаю 50 километров то за два часа я как раз проезду 100 километров да для того чтобы добраться от горшков до парижа мне нужно два часа действительно ли все так просто да на самом деле все потому что мы знаем что если я буду двигаться и чуть чуть быстрей то и приеду я чуть чуть раньше а если я буду двигаться немножко медленней то чутка позже и приеду в точку назначения это яркий пример устойчивой системы система описанная по математическим законам может считаться устойчивой если при малых изменениях начальных условий мы наблюдаем малые изменения результата двигался чуть чуть быстрее приехал чуть чуть раньше чем сложнее система тем она как правило неустойчивее но когда речь идет о сложных системах уже по самому названию можно понять что не все здесь так просто в английском языке есть слово complex и слово complicated b они оба переводятся на русский язык как сложный но при этом их значения немного разнятся и по иронии именно эти маленькие различия имеют очень большое значение комплекс это сложный в смысле навороченный продвинутый возможно состоящий из нескольких других объектов которые тоже можно считать навороченными например айфон достаточно сложная навороченная штука которая внутри состоит из большого количества компьютеров сложная но тем не менее устойчивая мы ведь очень легко управляемся с айфонами при этом при малых изменения параметров мы наблюдаем малое изменение результата такие сложные на самом деле ведь сложные системы являются устойчивыми к начальным условиям а вот те сложные системы которые по-английски называются complecated как раз и являются неустойчивыми они и есть объекты изучения теории хаоса в таких системах при малых изменениях начальных условий происходит просто колоссальное изменение результата самый лучший синоним который я смог подобрать в русском языке это слово запутанный создателем теории хаоса является эдвард лоренц нет это не тот лоренц который открыл силу лоренца и преобразование лоренца наш лоренц в первую очередь был метеоролог просто видимо у метеорологов очень скучная работа и лоенц видать от скуки начал просто по несколько раз перепроверять результаты он получал лист с распечаткой всей информации по исследованию а затем брал начальные условия и снова забивал их в компьютер парадокс в том что каждый раз после такого вот повторного прогона компьютер выдавал результаты которые значительно отличались от основного исследования причем чем долгосрочнее прогноз тем сильнее были различия лоренц конечно не хотел делать вывод о неправильности метеорологии как области знаний и естесственно начал искать причину таких глобальных несостыковок и этим самым он навсегда изменил математику дело в том что данные в компьютер вбивались с точностью до шести знаков после запятой а на распечатке данные округлялись до трех знаков после запятой то есть когда лоренц вбивал данные повторно с листочка он вбивал не изначальные данные а данные которые были уже округлены и хотя это очень маленькие различия то есть максимальная ошибка ведь составляет одну тысячную это очень незначительно и этого было достаточно для того чтобы вместо яркой и солнечной погоды начался ураган с градом лоренц стал все глубже опускаться в математику и таким образом открыл новую науку которая называется теория хаоса кстати термин эффект бабочки тоже был введен лоренцом график показывающий изменение множества состоянии нелинейной динамической системы с течением времени в трехмерном случае подозрительно напоминает крылья бабочки но как он сам признаётся такое название ему предложили организаторы его конференции лоренц для большей ироничности привел вот такой пример взмах крыльев бабочки в бразилии может породить целую цепочку событий которые проведут за собой смерч в техасе эффект бабочки является центральным понятием теории хаоса при этом очень важно не путать хаос и случайность многие явления в биологии химии, медицине и даже экономике которые раньше было сложно писать математические законами которые тогда условно считались случайными сейчас оказались хаотичными и работать с ними можно по законам теории хаоса к примеру стало намного проще предсказывать приступы эпилепсии у больных движение спутников по орбите оказались хаотичными транспортный поток по многополосной трассе также подвержен эффекту бабочки особенно сильное влияние теория хаоса оказала на демографические и экологические исследования ну и конечно у синоптиков теперь есть отговорка почему это не обещали нам теплую и ясную погоду а на улице холодно идет дождь бабочка где-нибудь в бразилии махнула крыльями мы ничего не могли поделать конечно же исследования лоренца были революционными и оказали огромное влияние на массовую культуру в трилогии фильмов назад в будущее можно заметить как изменяя что то в прошлом марти макфлай наблюдает колоссальные изменения в настоящем это и есть эффект бабочки лично у меня словосочетание эффект бабочки в первую очередь ассоциируется с эштоном катчером хотя бы потому что мое первое знакомство с этим явлением произошло именно благодаря одноименному фильму где в главной роли был эштон наш мир что уж там скрывать сложная конструкция сразу во всех смыслах очень навороченная и очень запутанная штука в своем прошлом видео я рассказал о таком абстрактном компьютере который вполне возможно мог бы предсказывать будущее на сотни или даже тысячи лет вперед так вот эффект бабочки который несомненно присутствует в нашем запутанном и хаотичном мире делает такое предсказание практически невозможным никаких округлений никаких приближений никаких допущений это запрещено а одна маленькая незначительная упущенная деталь будет стоить нам больших последствий в наших естественно неудачных попытках предсказать будущее причем чем дальше тем сильнее будут неточности чем дальше тем безнадежнее выглядит вся эта задумка если вам понравилось это видео обязательно поставьте ему большой палец вверх кстати говоря я пришел оттуда а теория хаоса все еще берет верх над нами так и не давая нам понять как же это вышло и что будет дальше на этом все если это видео соберет большое количество пальцев вверх то мы с вами увидимся уже на следующем видеоролике всем пока

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание» как пример хаотической системы соответствует смешиванию разноцветных красок или жидкостей.

Тонкости определения

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора.

Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Странные аттракторы появляются в обеих системах , и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например, отображение Эно (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы, и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений . Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел , испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением .

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора , которую он продемонстрировал в 1960 году с использованием образа кошки.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений . Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хронология

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Дж. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбулентность и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Дж. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбулентностью течения жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы.

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года.

Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов .

В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию .

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т. д.).

Эволюции для предсказаний приступов, учитывая первоначальное состояние организма.

Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей.

Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. Выбрать тестируемое состояние.
  2. Найти несколько подобных или почти подобных состояний.
  3. Сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т. д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Когда в нелинейную детерминированную систему вмешиваются внешние помехи, её траектория постоянно искажается. Более того, действия помех усиливаются из-за нелинейности и система показывает полностью новые динамические свойства. Статистические испытания, пытающиеся отделить помехи от детерминированной основы или изолировать их, потерпели неудачу. При наличии взаимодействия между нелинейными детерминированными компонентами и помехами, в результате появляется динамика, которую традиционные испытания на нелинейность иногда не способны фиксировать.

Теория хаоса - это учение о сложных нелинейных динамических системах. Ниже рассматривается истинное положение вещей, как ответ многим ошибочным представлениям об этой области науки.

Что такое теория хаоса?

Формально, теория хаоса определяется как учение о сложных нелинейных динамических системах. Под термином сложные это и понимается, а под термином нелинейные понимается рекурсия и алгоритмы из высшей математики, и, наконец, динамические — означает непостоянные и непериодические. Таким образом, теория хаоса - это учение о постоянно изменяющихся сложных системах, основанное не математических концепциях рекурсии, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему.

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как Парк юрского периода, и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.


Теория хаоса о беспорядке

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса — это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок — и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы — наследственной непредсказуемости системы — а на унаследованном ей порядке — общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца (ри.1) . Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Рис. 1 Аттрактор Лоренца

Rnrnrn rnrnrn rnrnrn

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с колебаниями числа Авогадро (очень маленькое число порядка 10 24 ), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы — в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.


Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса?

Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые — вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени — представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные — т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter . Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1 . Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.


Броуновское движение и его применения

Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения .

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя. Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера.

Рис. 2 Частотная диаграмма

Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато. Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы.

Rnrnrn rnrnrn rnrnrn

Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

Любой, кто когда либо брал в руки кий для бильярда, знает, что ключ к игре — точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!


Движение биллиардного шарика

Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола — это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня словом фрактал.


Интеграция детерминированных фракталов и хаос

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал , называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора (Рис. 6) . Результат напоминает те старые детсадовские рисунки… Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.

Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (Рис. 8) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!

Может быть округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение , округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали (Рис. 9)

Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенныеБроуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до

Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то