Что такое системный подход в философии. Системный подход в современной науке и технике. Гносеологический смысл понятия «система»

В современной методологии науки, начиная с середины ХХ века, сформировался новый - системный подход - междисциплинарное философско-методологическое и специ­ально-научное направление, обладающее высоким исследовательским и объясняющим потенциалом. Как особый тип методологии, он предполагает вычленение общефилософ­ского, общенаучного и специально-научного уровней, а также рассмотрение соответст­вующего каждому из них понятийного аппарата, основных принципов и функций.

Как отмечают исследователи, идея системности в неявном, не отрефлексированном виде присутствует в размышлениях многих философов прошлого. Так, в древнегреческой философии в трудах Платона и Аристотеля широко представлена идея системности, реализуемая как целостность рассмотрения знания, системного построения логики, геометрии. Позже эти идеи развивались в трудах Лейбница - философа и математика, в частности, в «Новой системе природы» (1695), в стремлении создать «всеобщую науку». В XIX веке Гегель, по существу, обобщил опыт философии Нового времени в разработке проблемы системности, принимая за основу рассуждения целост­ность объектов исследования и системную природу философского и научного знания. И хотя прин­цип системности к этому времени явно сформулирован не был, но сама идея хорошо соотносилась с широко распространенными в естествознании систематизациями Линнея в биологии, Декандоля в ботанике, целостным изучением биологической эволюции Ч.Дарвиным и т.п. Классическим приме­ром применения идеи системности и целостности стало учение Маркса об общественно-экономической формации и рассмотрение им общества как «органической системы».

Сегодня философский принцип системности понимается как универсальное по­ложение о том, что все предметы и явления мира - это системы различных типов и видов целостности и сложности, однако открытым и обсуждаемым остается вопрос о том, какая из интерпретаций более оправдана - онтологическая или эпистемологическая. Господ­ствующая сегодня традиционная точка зрения - онтологическая, берущая начало от сис­темно-онтологических концепций Спинозы и Лейбница, приписывает «системность» са­мим объектам действительности, задача субъекта-исследователя - обнаружить систему, ее связи и отношения, описать, типологизировать и объяснить их. Но все более явно проби­вает себе дорогу эпистемологическая интерпретация, при которой «системность» рас­сматривается именно как принцип, неотделимый от теоретических установок субъекта-наблюдателя, его способности представить, сконструировать объект познания как систем­ный. В частности, известные современные ученые социолог Н.Луман, нейробиологи

У.Матурана и Ф.Варела стремились показать, что система, структура, окружающая среда не существуют в природной или социальной реальности, а формируются в нашем знании в результате операций различения и конструирования, проводимых наблюдателем. Одна­ко невозможно отрицать, что реальность должна обладать такими «параметрами», кото­рые могут быть представлены как системы. Системность предстает, таким образом, как современный способ видения объекта и стиль мышления, сменивший механистические представления и принципы интерпретации. Соответственно складывается особый язык, включающий прежде всего такие философские и общенаучные понятия, как системность, отношение, связь, элемент, структура, часть и целое, целостность, иерархия, организация, системный анализ и многие другие.

Принцип системности объединяет и синтезирует несколько идей и представлений: системности, целостности, соотношения части и целого, структурности и «элементарно­сти» объектов, универсальности, всеобщности связей, отношений, наконец, развития, по­скольку предполагается не только статичность, но и динамичность, изменчивость систем­ных образований. Как один из ведущих и синтезирующих философских принципов, он лежит в основе системного подхода - общенаучной междисциплинарной и частнонаучной системной методологии, а также социальной практики, рассматривающих объекты как системы. Он не является строгой теоретической или методологической концепцией, но как совокупность познавательных принципов позволяет фиксировать недостаточность внесистемного, не целостного видения объектов и, расширяя познаваемую реальность, помогает строить новые объекты исследования, задавая им характеристики, предлагает новые схемы их объяснения. Он близок по ориентированности структурно-функциональному анализу и структурализму, которые, однако, формулируют достаточно «жесткие» и однозначные правила и нормы, обретая соответственно черты конкретных научных методологий, например, в области структурной лингвистики.

Главное понятие системной методологии - система - получило серьезную разра­ботку как в методологических исследованиях, так и в общей теории систем - учении о специально-научном исследовании различных типов систем, закономерностей их сущест­вования, функционирования и развития. Основателем теории является Л. фон Берталанфи (1930), его предшественником в нашей стране был А.А.Богданов, создатель «Тектологии» (1913) - учения об универсальной организационной науке.

Система составляет целостный комплекс взаимосвязанных элементов; образует особое единство со средой; обладает иерархичностью: представляет собой элемент системы более высокого порядка, ее элементы в свою очередь выступают как системы

более низкого порядка. От системы следует отличать так называемые неорганизованные совокупности - случайное скопление людей, различного рода свалки, «развал» старых книг у старьевщика и многие другие, в которых отсутствует внутренняя организация, свя­зи случайны и несущественны, нет целостных, интегративных свойств, отличных от свойств отдельных фрагментов.

Особенность «живых», социальных и технических систем - передача информации и осуществление процессов управления на основе различных типов «целеполагания». Раз­работаны различные - эмпирические и теоретические - классификации систем, выявлены их типы.

Так, известными исследователями системной методологии В.Н.Садовским, И.В.Блаубергом, Э.Г. Юдиным выделены классы неорганичных и органичных систем, в отличие от неорганизованных совокупностей. Органичная система - это саморазвивающееся целое, проходя­щее этапы усложнения и дифференциации и обладающее рядом специфических особенностей. Это наличие в системе, наряду со структурными, и генетических связей, координации и субординации, управляющих механизмов, например, биологические корреляции, центральная нервная система, ор­ганы управления в обществе и другие. В таких системах свойства частей определяются закономер­ностями, структурой целого, части преобразуются вместе с целым в ходе его развития. Элементы системы определенное число степеней свободы (вероятностное управление) и постоянно обновля­ются вслед за изменением целого. В неорганичных системах зависимость между системой и ее эле­ментами менее тесна, свойства частей и их изменения определяются внутренней структурой, а не структурой целого, изменения целого могут не привести к изменениям в элементах, которые суще­ствуют самостоятельно и даже бывают активнее системы в целом. Стабильность элементов обу­словливает устойчивость таких систем. Органичные системы, как наиболее сложные, требуют осо­бых исследований, они наиболее перспективны в методологическом отношении (Проблемы методо­логии системного исследования. М., 1970. С. 38-39).

Из различения этих двух типов систем следует, что понятие элемента не является абсолютным и однозначно определенным, поскольку система может расчленяться разны­ми способами. Элемент - это «предел возможного членения объекта», «минимальный компонент системы», способный выполнить определенную функцию.

К фундаментальным задачам, решаемым сегодня в сфере становления и развития методологии системного исследования, относятся следующие: построение понятий и мо­делей для системного представления объектов, разработка приемов и аппарата описания всех параметров системы: типа связей, отношения со средой, иерархии строения, характе­ра управления, построение формализованных - знаковых, идеальных, математических -систем для описания реальных системных объектов и возможности применения правил логического вывода. В конкретных науках на уровне специальной методологии осуществ-

ляются системные разработки с использованием конкретных методов, приемов системно­го анализа, применяемых именно для данной области исследования.

Системная постановка проблемы предполагает не просто переход на «системный язык», но предварительное выяснение возможности представить объект как целостность, вычленить системообразующие связи и структурные характеристики объекта и т.п. При этом всегда возникает необходимость выяснить предметную соотнесенность, т.е. соот­ветствие понятий, методов, принципов данному объекту в его системном видении и в со­четании с методами других наук, например, приложим ли к системно представленному объекту математический аппарат и каким он должен быть.

Ряд методологических требований относится к описанию элементов объекта, в ча­стности, оно должно осуществляться с учетом места элемента в системе в целом, посколь­ку от этого существенно зависят его функции; один и тот же элемент необходимо рас­сматривать как обладающий разными параметрами, функциями, свойствами, проявляю­щимися различно в соответствии с иерархическими уровнями или типом системы. Объект как система может быть плодотворно исследован только в единстве с условиями ее суще­ствования, окружающей средой, его структура понимается как закон или принцип соеди­нения элементов. Программа системного исследования должна исходить из признания та­ких важных особенностей элементов и системы, как порождение особого свойства целого из свойств элементов и, в свою очередь, порождение свойств элементов под воздействием свойств системы как целого.

Эти общеметодологические требования системного подхода могут быть дополнены его конкретными особенностями в современных науках. Так, Э.Г.Юдин рассмотрел развитие идей сис­темности и применение методологических принципов этого подхода в психологии. В частности, он показал, что гештальтпсихология впервые поставила вопрос о целостном функционировании пси­хики, законы гештальта представила как законы организации целого на основе объединения функ­ций и структуры. При этом подход с позиций целостности, системности не только объединял объ­ект, но и задавал схему его расчленения и анализа. Известно, что гештальт-психология и ее схемы подверглись серьезной критике, но вместе с тем «основные методологические идеи психологии формы едва ли принадлежат истории и составляют часть всей современной психологии культуры, а следы их плодотворного влияния можно найти практически во всех главных сферах психологии» (Юдин Э.Г. Методология науки. Системность. Деятельность. М., 1997. С. 185-186).

Крупнейший психолог ХХ века Ж.Пиаже процесс психического развития также трактовал как динамическую систему взаимодействия организма со средой, обладающую иерархией структур, надстраивающихся друг над другом и не сводимых одна к другой. Осуществляя операциональный подход и размышляя о системно-структурной природе интеллекта, находящегося на вершине сис­темной иерархии, он высказал новую для своего времени идею о построении «логики целостно-

стей», которая не реализована и сегодня. «Чтобы осознать операциональный характер мышления, надо достичь систем как таковых, и если обычные логические схемы не позволяют увидеть такие системы, то нужно построить логику целостностей» (Пиаже Ж. Избранные психологические труды. М., 1969. С. 94).

Стремясь овладеть системной методологией, применяя ее принципы и понятия, следует иметь в виду следующее. Использование системного подхода не является прямой дорогой к истинному знанию, как методологический прием системное видение лишь оп­тимизирует познавательную деятельность, делает ее более продуктивной, но для получе­ния и обоснования достоверного знания необходимо применять весь «арсенал» общемето­дологических и специальных принципов и методов.

Воспользуемся примером Э.Г.Юдина, чтобы понять, о чем идет речь. Известный ученый Б.А.Рыбаков, стремясь установить автора «Слова о полку Игореве», не имел в виду системный подход и не использовал соответствующих понятий, но объединил и совместил несколько различ­ных способов анализа социально-политических условий Киевской Руси того времени, симпатий и антипатий автора, выраженных в «Слове», его образованность, стилевые и иные особенности лето­писи той эпохи. Была составлена и использована генеалогическая таблица киевских князей. В ходе исследования прояснялись особые системы связей и отношений в каждом из привлеченных случаев, которые не рассматривались отдельно, но были наложены друг на друга. В результате область по­иска и число возможных кандидатур резко сократились и с большой долей вероятности было выска­зано предположение, что автором являлся киевский боярин Петр Бориславич, летописец киевских князей. Очевидно, что здесь был использован принцип целостности, чтобы усилить эффективность исследования и преодолеть разрозненность, неполноту и частичный характер факторов. Результат несомненно был интересным, приращение знаний - очевидным, вероятность достаточно высока, од­нако другие специалисты в этой области, в частности, Д.С.Лихачев, высказали достаточно много контраргументов и не признали истинности выводов, вопрос об авторе остается открытым и сего­дня.

В этом примере, отражающем одновременно особенности гуманитарных исследо­ваний, где невозможна формализация и применение математического аппарата, прояви­лось два момента: первый - целостность (системность) объекта была сконструирована, в действительности он не являлся системой с объективными закономерными связями, сис­темность представлена только в своей методологической функции и не имеет онтологиче­ского содержания; второй - системный подход не следует рассматривать как «прямой путь» к истинному знанию, задачи и функции у него другие и прежде всего, как уже было сказано, расширение сферы видения реальности и конструирование нового объекта иссле­дования, выявление новых типов связей и отношений, применение новых методов.

Системная методология получила новые импульсы в своем развитии при обраще­нии к самоорганизующимся системам или, иначе, при представлении объекта как самоор-

ганизующейся системы, например, головного мозга, сообщества организмов, человеческо­го коллектива, экономической системы и других. Системы этого типа характеризуются активным влиянием на среду, гибкостью структуры и особым «адаптивным механизмом», а также непредсказуемостью - могут менять способ действия при изменении условий, способны обучаться, учитывать прошлый опыт. Обращение же к сложноорганизованным эволюционирующим и неравновесным системам вывело исследователей к принципиально новой теории самоорганизации - синергетике, возникшей в начале 70-х годов ХХ века (термин ввел немецкий физик Г.Хакен от греческого sinergeia - cодействие, сотрудниче­ство), сочетающей системно-информационный, структуралистский подходы с принципа­ми самоорганизации, неравновесности и нелинейности динамических систем.

Одно из важнейших примет естественнонаучного прогресса в нашем веке-интеграция научного знания. Проявление этой интеграции многообразно. Это и возникновение междисциплинарных отраслей, подобных биофизике, и рождение наук, изучающих совокупность объектов, которые ранее изучались различными дисциплинами, и синтез специальных теорий на единой аксио­матической основе, и перенос теоретических представлений, разработанных в одной области явлений, на другую, нередко весьма далекую от первой, и многое другое.

Все эти тенденции-многоликое выражение стиля мышле­ния в науке XX века, в преддверии нового тысячелетия. Осознание этого факта послужило толчком к анализу методологических приоритетов, определяющих такой стиль, который привел к разработке познавательной стратегии, ко­торая получила название системного подхода .

Понятие системы появилось в науке сравнительно недавно. Оно имеет много различных определений. Приведем одно из наиболее простых. Система - это комплекс взаимосвязанных и взаимодействующих эле­ментов; в результате их взаимодействия достигается определенный полезный результат.

Таким образом, система состоит из дробных частей - элементов, причем эти элементы представляют со­бой не случайную совокупность, а каким-то образом взаимодействуют. Следовательно, между ними сущест­вуют определенные связи.

Очень важно отметить следующую особенность. Существуют системы разных порядков. При этом сис­тема более низкого порядка выступает как элемент си­стемы более высокого порядка. Получается нечто по­добное матрешкам.

Так, например, если мы рассмот­рим систему «человечество», то отдельный человек является элементом этой системы. В свою очередь, че­ловеческий организм - это тоже система, в которой такой орган, как скажем сердце, представляет собой элемент. Идя дальше, можно рассматривать систему «сердце», одним из элементов которой является синус­ный узел, а клетки, из которых он состоит - это эле­менты системы «синусный узел» и т. д.

Классификации систем

Классификация систем может производиться по са­мым разным основаниям деления. Прежде всего все системы можно разделить на материальные и идеаль­ные, или концептуальные. К материальным системам относится подавляющее большинство систем неоргани­ческого, органического и социального характера. Все материальные системы в свою очередь могут быть раз­делены на основные классы соответственно той форме движения материи, которую они представляют. В связи с этим обычно различают гравитационные, физические, химические, биологические, геологические, экологиче­ские и социальные системы. Среди материальных сис­тем выделяют также искусственные, специально создан­ные обществом, технические и технологические систе­мы, служащие для производства материальных благ.

Все эти системы называются материальными пото­му, что их содержание и свойства не зависят от по­знающего субъекта, который может все глубже, полнее и точнее познавать их свойства и закономерности в соз­даваемых им концептуальных системах. Последние на­зываются идеальными потому, что представляют собой отражение материальных, объективно существующих в природе и обществе систем.

Наиболее типичным примером концептуальной сис­темы является научная теория, которая выражает с по­мощью своих понятий, обобщений и законов объектив­ные, реальные связи и отношения, существующие в конкретных природных и социальных системах.

Другие классификации в качестве основания деле­ния рассматривают признаки, характеризующие состоя­ние системы, ее поведение, взаимодействие с окружени­ем, целенаправленность и предсказуемость поведения и другие свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое в известной мере условно, так как все в мире находится в постоянном изменении и движении. Поскольку, однако, во многих явлениях мы различаем статику и динамику, то кажется целесообразным рассматривать специально также статические системы.

Среди динамических систем обычно выделяют де­терминистские и стохастические (вероятностные) сис­темы. Такая классификация основывается на характере предсказания динамики поведения систем. Как отмеча­лось в предыдущих главах, предсказания, основанные на изучении поведения детерминистских систем, имеют вполне однозначный и достоверный характер. Именно такими системами являются динамические системы, исследуемые в механике и астрономии. В отличие от них стохастические системы, которые чаще всего назы­вают вероятностно-статистическими, имеют дело с мас­совыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не дос­товерный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают, как отмечалось выше, системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация но­сит в основном условный характер, ибо представление о закрытых системах возникло в классической термоди­намике как определенная абстракция, которая оказалась не соответствующей объективной действительности, в которой подавляющее большинство, если не все систе­мы, являются открытыми.

Многие сложноорганизованные системы, встречаю­щиеся в социальном мире, являются целенаправленными, т. е. ориентированными на достижение одной или не­скольких целей, причем в разных подсистемах и на раз­ных уровнях организации эти цели могут быть различ­ными и даже придти в конфликт друг с другом.

Классификация систем дает возможность рассмотреть множество существующих в науке систем ретроспективно и поэтому представляет для исследователя большой ин­терес.

При изучении любой науки и при решении ее задач ча­сто бывает необходимо определить, на уровне какой системы следует вести рассмотрение.

Специфика мировосприятия математика, физика, химика, биоло­га на этом уровне представляется лишь частными случаями ди­алектики познания, а предметное содержание этих наук рас­сматривается как иллюстрация диалектики природы. Поэтому для представителей каждой из этих дисциплин, заинтересованных в конструктивных методологических приемах решения сво­их специфических проблем, необходим менее абстрактный, но более предметно содержательный арсенал методологических средств, ориентированный на конкретную область науки и, главное, способствующий выбору рациональной стратегии науч­ного поиска. Этим требованиям отвечает системный подход.

Для творческого восприятия данной методологической кон­цепции необходимо проследить за ее становлением в процессе развития естествознания.

Внимание иссле­дователей к системному подходу было привлечено работами Л. Берталанфи по общей теории систем. После этого системный анализ все чаще стал привлекаться в различных областях науки.

В настоящее время системный подход представляет собой на­иболее рациональный стиль мышления при изучении объектов живой природы. Системные воззрения синтезируют в себе весь методологический опыт естествознания в прошлом. Вскрывая односторонность ранее существовавших познавательных страте­гий, системный подход определяет их место и роль в процессе познания окружающего мира на современном этапе.

Возникновение системного подхода, несомненно, центрально­го методологического направления современной науки, нередко связывают с преодолением кризиса научного познания на рубеже XIX-XX вв. Именно в это время возникли серьезные противоречия между уровнем накопленных знаний и методоло­гией научного познания. В различных областях науки появи­лись новые идеи, концепции, представления, коренным образом отличавшиеся от господствовавшего образа мышления. Про­грессивный характер этой тенденции заключался в том, что выразители этих новых взглядов ориентировались на вызревав­шие в рамках существующей парадигмы элементы того направ­ления в прогрессе познания, которое широко развернулось в на­шем веке. Основной чертой этого направления в содержатель­ном плане следует назвать интеграцию научного знания.

Человек в процессе своего развития исследует и изучает огромное множество объектов, явлений и процессов окружающего мира. Наиболее простой и естественный путь получить представление о незнакомом объекте-выяснить, из ка­ких элементов он состоит. Если речь идет о процессе, полезно узнать, из каких стадий он складывается и можно ли его пред­ставить совокупностью более простых движений. На практике это привело к нахождению общего элементарного основа­ния у объектов разнообразной природы.

В химии этим общим основанием оказались химические элементы, организованные за­тем в периодическую таблицу Менделеева (открытие периоди­ческого закона ознаменовало начало нового этапа развития хи­мических представлений-синтетического).

В физике такими элементарными сущностями стали типы силового взаимодейст­вия и элементарные частицы, образующие атомы.

Становление биологии нового времени началось с изучения разнообразия биологических форм животного и растительного происхожде­ния, а затем поиска признаков, по которым можно было бы си­стематизировать это разнообразие.

Возникновению физиологии предшествовало анатомическое изу­чение строения организма человека и животных. Существенную роль в последующем развитии биологии сыграла клеточная те­ория строения организмов. Именно целостный подход был методологической основой идеи единства органического мира в его эволюционном развитии.

Еще задолго до появления системного подхода начало формироваться пони­мание того, что для познания недостаточно ориентироваться только на этот метод.

Первый существенный шаг в данном направлении сделал И. Кант, указав на зависимость процесса познания не только от объекта изучения, но и от познающего субъекта, способа его мышления . По Канту, познание-это не простое отражение действительности, а творческое осмысливание, требующее конструктивной мыслительной деятельности.

Следующий шаг был сделан Г. Гегелем. Гегелевская диалектика являла по сущест­ву новый способ мышления, ориентирующий на поиски внутрен­них источников существования и развития объектов, предпола­гающий диалектическое единство целого и его частей.

Новые методологические подходы наметились в это же вре­мя и в физике. Они были связаны с углублением представле­ний о причинности. Господствовавший ранее лапласовский детерминизм - убеждение в том, что в конечном счете любые процессы предопределены однозначными причинными взаимоот­ношениями,-уступил место вероятностному принципу объясне­ния.

Наконец, в математике XIX века произошло крупнейшее собы­тие, провозгласившее концепцию симметрии, ставшую одной из методологических основ теоретико-физического мышления на­шего века.

В 1872 г. была опубликована «Эрлангенская про­грамма» Ф. Клейна. «Программа» выдвинула синтетический принцип, объединявший на единой концептуальной основе раз­личные геометрии (евклидову, неевклидову, проективную, конформную и др.), ранее изучавшиеся изолированно. Разрозненные математические направления (элементы) были охвачены взаимосвязями и образовали структурное целое, ко­торое уже в начале XX века обрело онтологическое (от греч. ontos - су­щее. и logos-учение, слово) содержание.

Итак к началу ХХ века все предпосылки для интенсивного развития общей теории систем были налицо.

Теория системного подхода

Системное движение, получившее широкое распро­странение в науке после Второй мировой войны, ставит своей целью обеспечить целостный взгляд на мир, по­кончить с узким дисциплинарным подходом к его по­знанию и содействовать развертыванию множества программ по междисциплинарному исследованию ком­плексных проблем. Именно в рамках этого движения сформировались такие важнейшие направления меж­дисциплинарных исследований, как кибернетика и си­нергетика.

Теория систем в том виде, как она представлена ав­стрийским биологом-теоретиком Людвигом фон Берталанфи (1901-1972) и его последователями, ориентиру­ется в целом на поддержание и сохранение стабильно­сти и устойчивости динамических систем. Известно, что кибернетическая самоорганиза­ция технических систем регулирования нацелена на со­хранение их динамической устойчивости посредством отрицательной обратной связи. Новая, более общая ди­намическая теория систем, должна, очевидно, опираться на те фундаментальные результаты, которые были дос­тигнуты в науке и прежде всего в теории диссипативных структур. Без этого нельзя понять механизма возникновения нового поряд­ка и структур, а следовательно, и подлинной эволюции систем, связанной с возникновением нового в развитии. Вот почему современные авторы обратились к теории диссипативных структур и синергетике для объяснения значения системного подхода в процессе познания.

В самом общем и широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части или элементы опре­деленного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее эле­ментов. С таким пониманием системы мы постоянно встреча­лись в ходе изложения всего предыдущего материала. Однако оно применимо лишь для характеристики систем, состоящих из однородных частей и имеющих вполне определенную структу­ру. Тем не менее на практике нередко к системам относят со­вокупности разнородных объектов, объединенных в одно целое для достижения определенной цели.

Главное, что определяет систему, - это взаимосвязь и взаимодействие частей в рамках целого. Если такое взаимо­действие существует, то допустимо говорить о системе, хотя степень взаимодействия ее частей может быть различной. Следует также обратить внимание на то, что каждый отдельный объект, предмет или явление можно рассматривать как опре­деленную целостность, состоящую из частей, и исследовать как систему.

В неявной форме системный подход в простейшем виде применялся в науке с самого начала ее возникно­вения. Даже тогда, когда она занималась накоплением и обобщением первоначального фактического материала, идея систематизации и единства лежала в основе ее по­исков и построения научного знания.

12.1. Функции системности в науке

Основные направления системности в науке

Системная методология включает в себя системный подход как принцип познания и практики, метод деятельности, теорию. Обладая исключительно большим потенциалом, она находит широкое применение в современной науке (естественные, технические, общественные науки, науки о человеке).

В настоящее время происходит интенсивная интеграция наук, изучающих объекты различной природы, но использующих общие методологические подходы, методы и даже методические приемы. Это подчеркивает В. П. Кохановский: "Один из важнейших путей взаимодействия наук - это взаимообмен методами и приемами исследования, т.е. применения методов одних наук в других" .

Системный подход - специфическая реакция на бурный и длительный процесс дифференциации в науке, который привел к возникновению огромного количества непохожих одна на другую наук. Это то, что объединяет отдельные науки в единую науку, форма методологической интеграции современной науки. Происходящие в нем открытия в рамках конкретных наук довольно быстро становятся достоянием всей науки. Системный подход - единство методологической интеграции и дифференциации при доминировании тенденции объединения, собирания методологического комплекса.

При этом он выполняет самые многообразные функции в науке. Наиболее важными среди них выступают мировоззренческая, эвристическая, объясняющая, методологическая и прогностическая функции (табл. 40).

Ныне невозможно представить ни одного ученого, который не отличался бы системным мировоззрением. Системное мировоззрение обеспечивает интеллектуальные и социально-психологические предпосылки для познания. Удивительно, но уже до познавательного акта ученый благодаря своему мировоззрению изначально обеспечивает себе успех в постижении истинности объекта, ибо он подходит к нему как к системе.

Перечислим наиболее важные проблемы системного мировоззрения современных специалистов:

недостаточная глубина системных взглядов, которая выражается в том, что специалист владеет даже не научным, а обыденным детерминистским пониманием природы систем;

низкая эрудиция в сфере системных идей, незнание достижений системности в своей отрасли и науке вообще;

неметодологичность системного мировоззрения, когда системные знания специалист не может применить в качестве метода познавательной и практической деятельности. В практике научных исследований системный подход ценен не только парадигмаль-ностью, но и методологичностью, т.е. использованием его не столько как способа представления мира, а как метода его познания. В этом и заключается его методологическая функция, когда системность в познавательном процессе работает как принцип, метод и теория;

Разрыв между философским, общетеоретическим и математико-кибернетическим пониманием систем. Как правило, специалист, знающий философию систем, не владеет по причине своей гуманитарной подготовки кибернетикой и математикой систем, а специалисты технического профиля не поднимаются до уровня общесистемных идей.

Следует подчеркнуть, что в практике научных исследований наблюдается быстрый рост культуры системных исследований, включающий в себя не только знания из общей теории систем, но и инструментальное владение системным подходом, системным анализом. Если еще несколько лет назад упоминание в статье слова "система" и трактовка его в смысле комплексности делало публикацию системной, то ныне довольно широко используются структурный, функциональный, структурно-функциональный, системно-логический и другие подходы, вырабатывается специфика применения системных идей в различных сферах практической деятельности: бизнесе, государственном управлении, социальной защите, культуре и т.д.

Важное предназначение системного подхода заключается в познании, в получении истины, т.е. знания, которое соответствует своему предмету, совпадает с ним. Особенность ее в системном исследовании заключается в представлении целостной, универсальной и многомерной картины действительности.

Эвристика представляет собой сферу научного знания, цель которой - открытие нового в науке, технике и других сферах жизни; облегчает и упрощает решение познавательных, конструкторских, практических задач. Она опирается на методы теории познания, синтеза знания и исследование бессознательного: вдохновения, ин-сайта, озарения, медитации, "мозгового штурма", соприкасается с творчеством, исследует его механизмы, побуждения в реальной деятельности.

Рассмотрим эвристическую функцию системного подхода. Прежде всего, отметим, что он выступает межотраслевым эвристическим методом, т.е. широко применяется во всех отраслях науки и практической деятельности. Для метода свойственна высокая гибкость и способность приспосабливаться к накопленному в той или иной науке знанию и исследовательской традиции. К тому же он является рациональным эвристическим методом, который не только способствует озарению, инсайту, но и позволяет построить технологию по

лучения нового знания и представить его в наиболее удобной системной форме. Эвристическая роль системного подхода нередко заключается в том, что он дает возможность усматривать пробелы в знаниях о данном объекте, обнаруживать их неполноту, определять задачи научных исследований, в отдельных случаях (путем интерполяции и экстраполяции) предсказывать свойства отсутствующих частей описания . Так, если исследователь определил системные характеристики какого-то объекта, то далее системный подход от него требует анализа структуры и функций системы. Стоит только исследователю взять на вооружение системный подход и применить какую-либо его составляющую, как неизбежно начинает развертываться его целостная и разнообразная логика, возникают вопросы к объекту как к системе, которые нельзя оставить без ответа.

Системное мышление выступает мощным источником гипотез - предположений о тех или иных сторонах, свойствах, связях объектов. Само гипотетическое знание о системах является очень многообразным. Исследователь может выдвинуть относительно простые гипотезы о границах, составе, структуре, организации, функциях, особенностях развития системы. Уместны и более сложные составные гипотезы, предполагающие наличие связи между структурой и функциями, организацией и свойствами и т.п. Поток системных гипотез создает благоприятные возможности для объяснения объектов и процессов.

Объясняющая функция системной методологии заключается в том, что она позволяет обнаруживать устойчивые, сущностные и неслучайные зависимости, т. е. закономерности. Нередко объяснение сводят к выявлению причин. Системное объяснение, на наш взгляд, представляет собой особый вид объяснения, который строится не на причинно-следственных связях, а на системных закономерностях. При этом оно может реализовываться как по индуктивной, так и по дедуктивной моделям. При этом гипотетико-дедуктив-ное объяснение строится на выдвижении научно обоснованных гипотез и их эмпирической проверке. А индуктивное объяснение сводится к сбору эмпирической информации о системе и ее обобщению. Каждая из этих моделей характеризуется тем, что имеет совокупность феноменов, подлежащих объяснению, - объясняемое, и совокупность предложений теории, т.е. законов и гипотез, служащих основанием объяснения. В той и другой модели объяснение опирается на системные представления и закономерности.

Прогностическая функция системности отличается от функции объяснения тем, что здесь нет знания-результата, которое при прогнозировании надо получить. Она реализуется несколькими путями. Во-первых, благодаря теории эволюции систем, проходящих общие этапы развития, удается собрать информацию о феноменах, которые не существуют в данный момент, но возникнут благодаря пространственно-временному развитию системы. Во-вторых, системные идеи довольно широко применяют для предсказания будущего систем, их воздействий на окружающую среду на основе модели волновой и циклической динамики. Например, довольно эффективной для прогнозирования экономической конъюнктуры является теория волн выдающегося русского экономиста Н. Д. Кондратьева (1892-1938), создавшего в начале 20-х годов теорию длинных волн с периодом 45-55 лет, которые обусловлены внедрением технических изобретений, развитием новых отраслей промышленности. Волновые и циклические процессы свойственны для всех разновидностей систем. Поиск, обоснование и расчет длины волны или длительности цикла позволяет предвидеть будущее системы.

Системные законы и их роль в познании

Роль системной ментальности, системной методологии будет, несомненно, возрастать в жизнедеятельности человека ХХІ ст. Процесс обусловлен быстрым ростом потенциала системности, накоплением значительных объемов знания о системах, оттачивание тонкого и эффективного инструментария исследований. Конечно, каждая эпоха будет приводить к актуализации тех или иных положений теории систем, обеспечивать ревизию и интеграцию системного знания, как это происходит ныне, когда обновляются системные идеи в свете постклассической и постнеклассической методологий.

Роль системности в методологии науки трудно переоценить. Практически все значительные достижения наук со второй половины ХХ ст. в большей или меньшей степени связаны с системной методологией. Системный подход ценен прежде всего тем, что он формулирует общесистемные законы, которые улавливают зависимости между отдельными сторонами и свойствами систем. Подчеркнем, что системные законы носят общесистемный характер, т.е. они свойственны для систем любой природы. Среди них выделяются:

Закон соотношения целого и части - система как целое больше суммы составляющих ее частей. Этот закон восходит к утверждению древних мыслителей о том, что целое больше его частей.

Закон совокупных свойств системы, или закон эмерджентности - свойства системы не сводятся к свойствам ее элементов, а являются результатом их интеграции.

Закон зависимости свойств системы не только от свойств составляющих элементов, но и взаимосвязей между ними. Другая трактовка этого закона такова: две системы, содержащие тождественные элементы, могут быть несхожими по свойствам благодаря различию в характере и архитектонике связей.

Закон взаимосвязи структуры и функции, заключающийся в констатации взаимообусловленности структуры и функций системы.

Закон функциональной целостности системы, констатирующий

функциональную интеграцию элементов в функции системы.

Закон простоты и сложности системы, согласно которому, чем проще система, чем из меньшего числа элементов и связей она состоит, тем меньше проявляет она системное качество и чем сложнее система, тем более непохожим является ее системный эффект по сравнению со свойствами каждого элемента.

Закон ограничения разнообразия системы У. Р. Эшби, который говорит о том, что организованные системы отличаются ограничением разнообразия.

Закон закрытых систем - закрытые системы подчиняются второму закону термодинамики и стремятся к максимальной неупорядоченности.

Закон открытых систем - открытые системы благодаря вводу негоэнтропии могут сохранять высокий уровень организованности и развиваться в направлении увеличения порядка и сложности.

Закон взаимосвязи сложности системы и ее устойчивости, который говорит о том, что усложнение систем ведет к обретению системой дополнительной устойчивости. Чем сложнее система, тем менее она устойчива. Но для того чтобы не разрушиться, система вынуждена находить дополнительные источники устойчивости.

Закон равновесия системы, констатирующий, что только тогда система находится в равновесии, когда каждый ее элемент находится в состоянии равновесия, определяемом другими элементами.

Закон многообразия (плюрализма) системных представлений, согласно которому целостность системы никогда не может быть сведена только к одной ее модели. При дополнительных поисках обязательно найдется такая модель системы, которая будет непохожей на предыдущую.

Закон адаптации систем, утверждающий, что чем выше адаптивность системы, тем она имеет большую вероятность потерять свою идентичность.

Закон развития системы, согласно которому развитие системы осуществляется не благодаря укреплению элементов и связей, а посредством возникновения зон неупорядоченности, хаоса, которые формируют точки бифуркации, переход через которые выводит систему на новый уровень упорядоченности.

Закон продуктивности хаоса, полагающий, что любая объективная неупорядоченность, любой реальный хаос содержат в себе элементы и даже очаги самоорганизации.

Названный список законов нельзя считать исчерпывающим. По всей видимости, обоснование системных законов представляет собой процесс, который только набирает силу в современной науке и будет идти по нескольким направлениям: обоснование общесистемных законов, объясняющих системы независимо от их природы; формулирование законов систем определенной природы и осмысление в свете системности имеющихся; поиск закономерностей системного мышления, анализа, познания.

12.2. Системные идеи в практической жизни общества

Системный подход получает все более широкое применение в деятельности людей, обнаруживая высокую эффективность в технике и технологии, экономике и предпринимательстве, политике и социальной сфере, культуре и идеологии. В практической жизни общества используются несколько трактовок системного подхода: обыденная, философская, кибернетическая, аналитическая, математическая, конструкторская.

Обыденная транктовка представляет собой совокупность мыслей и суждений человека, применяемых в обыденной жизни относительно тех или иных объектов природы и общества. Чаще всего люди употребляют понятие система применительно к мышлению и деятельности ("система мышления", "система работы", "система тренировок" и т.п.). Эффективность обыденного применения системности как не вызывает особых возражений, так и не имеет убедительных доказательств. По всей видимости, люди с техническим образованием чаще используют системность для обозначения пред-метно-деятельностных систем, а с гуманитарным применяют ее для обозначения различных интеллектуальных систем.

Философское использование системных идей включает в себя не только расширение и укрепление позиций системности в качестве одной из базовых общефилософских методологий, но и как некоторой мировоззренческой системы, обладающей способностью отражения, объяснения и изменения действительности. Ныне можно говорить о системном мировоззрении как важнейшей составляющей мировоззренческой и мыслительной культуры человека.

Системная парадигма, системная ментальность, способность к систематизации, владение системным анализом все чаще становятся востребованными профессиональными качествами. Следует подчеркнуть, что запрос на специалистов, которые владеют ими, становится, как это не парадоксально, все менее удовлетворяемым на рынке интеллектуального труда. При этом велика потребность не только в " чистых системщиках", но и в специалистах в самых различных областях, владеющих системными методами. Например, одна из сфер, где востребованы интеллектуалы, - избирательные технологии. Здесь находят себе занятие и неплохой заработок организаторы из

бирательных кампаний, политтехнологи и специалисты в области Public Relations, имиджелогии. Однако большинство из них не владеют системным подходом, не отличаются системной ментальностью, что и приводит довольно часто к слабой системной обоснованности предлагаемых мероприятий в процессе предвыборной борьбы.

Кибернетическое понимание системного подхода широко применяется в инженерной деятельности, специалистами в управлении техническими, производственными, экономическими и социальными системами, отличается четкостью и сводится к нескольким идеям формального представления системы и ее взаимосвязи со средой.

Особенно значимо применение системного подхода в конструировании, моделировании и управлении.

В конструирования систем различной природы применяется конструкторская трактовка системного подхода. Она очень эффективна в случае конструирования не только технических, но и политических, социальных систем, при создании интеллектуального продукта. Важную роль играет системная ментальность, которая базируется на принципах открытых, диссипативных систем. Особенно опасны для практики конструирования механистический и жестко детерминистический подходы. Нельзя обойтись без поиска гармонии между управлением и самоуправлением, централизацией и децентрализацией. Заметим, что в прошлое десятилетие наблюдались перепады относительно соотношения этих принципов. При социализме отдавали предпочтение управлению и централизации по сравнению с самоуправлением и децентрализацией. В начале 90-х модным акцентом стало предпочитать самоуправление и децентрализацию. Однако практика нашего времени потребовала поиска оптимального соотношения между этими полярными полюсами системного мировоззрения.

Нарастание технологического, экономического, социального и духовного разнообразия в современном обществе на фоне роста влияния на все происходящее человеческого фактора выдвигает необходимость создания индивидуальных моделей управления системами. Управленческий консультант, специалист в области антикризисного управления, инновационного менеджмента, рыночного консалтинга становятся ключевыми фигурами обеспечения предпринимательского успеха, который в конечном итоге объясняется созданием фирменной модели эффективного управления.

Деятельность человека, принимающего решения, требует системно-структурных представлений и включает: системный анализ объекта деятельности, выделение его составляющих, структуры, функций, целей; определение проблемы, требующей разрешения; выяснение цели системы, состоящей в преодолении проблемы, достижении равновесия; декомпозицию цели до простых задач; анализ ресурсов (финансовых, материальных, кадровых, временных, информационных и др.), который предполагает: а) анализ необходимого ресурсного обеспечения задач; б) анализ имеющихся ресурсов, которые могут быть использованы для решения задач; в) обоснование реального ресурсного обеспечения задач; разработку управленческого решения (совокупность мер по решению проблемы), операциональной модели управленческого решения, операций по реализации решения в практику, операций контроля и регулирования системы.

Математическая трактовка системного подхода имеет довольно узкую социальную базу, свойственную для специалистов в различных областях кибернетики и прикладной математики.

Можно выделить три вида деятельности, в которых находит применение системность: информационная, инженерная и практическая (рис. 31).

Информационная деятельность связана с обучением, познавательной деятельностью и прогнозированием, т.е. получением, переработкой и передачей информации. Она поддерживается объективным развитием общества, его вхождением в информационную цивилизацию, которая характеризуется:

ростом объема информации, который удваивается каждые 20 месяцев против 50 лет во времена К. Маркса, и интенсификацией информационных процессов. Основные составляющие информации, по мнению Р. Ф. Абдеева: 1) неуклонное возрастание скорости передачи сообщений; 2) увеличение объема передаваемой информации; 3) ускорение обработки; 4) все более полное использование обратных связей; 5) увеличение объема новой информации и ускорение ее внедрения; 6) наглядное отображение информации в процессе управления; 7) рост технической оснащенности управленческого труда ;

превращением информации в объект и предмет деятельности основной части населения, которое постепенно вытесняется из материальной сферы деятельности в виртуальное информационное пространство;

Социальная сфера

Общественные науки

Социальная жизнь

Политическая жизнь

Экономическая жизнь

Рис. 31. Системный подход в практической жизни общества

Изменением природы социальных институтов, отношений, организаций и систем. Они становятся информационными, виртуальными, кардинально преобразуются, утрачивают одни функции и приобретают другие;

интенсивным развитием информационного пространства, которое заполняется информационными системами и процессами. Это пространство становится пространством главной сущности человека;

усилением динамики социальной жизни, которая приводит к тому, что усиливается переходный нестационарный характер социальных систем.

Инженерная деятельность включает в себя диагностику, конструирование и регулирование. Она может быть технической инженерной деятельностью, направленной на создание технических систем, и социальной, ставящей целью работу с социальными системами. Социальный инженер выполняет очень важные функции в обществе: диагностирует, конструирует социальные системы, " исправляет" и " лечит" их, восстанавливает равновесие индивида со средой, приводит в соответствии с изменившимися условиями и ценностями жизни людей. Следует подчеркнуть, что социальная инженерия - это перспективная сфера деятельности людей, которая ныне находится на этапе своего становления. На Западе термин "социальная инженерия" впервые ввел в оборот Р. Паунд. В СССР она заложена А. К. Гастевым и была ограничена уровнем управления промышленным предприятием. В 20-е годы сформировалась система НОТ, разрешающая инженерные проблемы области научной организации труда. Таким образом, социальная инженерия была тесно связана с технической инженерной деятельностью. Термин "социальная инженерия" с середины 30-х до середины 60-х годов не употреблялся ни в СССР, ни в США, хотя те преобразования социальных объектов, которые происходили, соответствовали ее сути, но осуществлялись под патронажем управления. Развитие социальной инженерии как самостоятельной отрасли знания началось в 80-е годы, а как практической деятельности в поставторитарных странах - с начала 90-х годов и раньше на полтора-два десятилетия в развитых странах.

Практическая деятельность подчинена сугубо прагматическим запросам людей. Она интегрирует в себе производство, управление и реализацию. Системный подход здесь применяется с разной степенью полноты. В информационной деятельности человеку приходится работать с информационными системами. В обучении системный подход выступает одним из важнейших принципов организации учебного процесса, а также как некоторые знания, методы и

навыки мыслительной деятельности, которые пытается заложить современное образование. В познании системность - это принцип, и целое семейство методов научного познания и накопления знаний о системах самой различной природы. Здесь имеются различные вариации системного знания в зависимости от природы систем и сложившихся познавательных парадигм.

В инженерной деятельности системные представления, связанные со структурой, организацией и функциями, определяют концептуальный контур инженерного конструирования. Регулятивные и диагностические процессы, которые осуществляет инженер, также базируются на системном подходе. При этом используются системные модели, системы нормативов и требований к диагностике и регулированию.

Практическая деятельность в меньшей степени связана с системностью, чем информационная и инженерная, поскольку в ней действуют налаженные производственные и социальные системы, например производящие и реализующие товары народного потребления или социальные услуги.

При другом подходе можно выделить гуманитарную, социальную и технократическую сферы и соответственно трактовки системного подхода. При этом наиболее широкое применение находит системность в философии, которая отличается широким спектром признания силы системного подхода от понимания его только как принципа познания, или методологического комплекса до признания всеобщим свойством материи. Среди гуманитарных наук, которые в наибольшей степени подверглись "нашествию" и "оккупации" системного подхода: логика, лингвистика, психология, педагогика, исторические науки и др. Сфера гуманитарных наук относится к наиболее медленно осваиваемой системными идеями.

Для педагогики системные методы просто находка. Они позволяют представить учебную информацию в активном для восприятия и запоминания виде, дать более целостное описание предмета науки.

В психологическую науку системные идеи вошли благодаря исследованиям Б. Г. Ананьева, П. К. Анохина, К. К. Платонова и др. Психика человека - сложный объект, знания о котором накапливались в течение тысячелетий. Она обладает рядом специфических особенностей, выделяющих ее среди явлений реального мира и затрудняющих ее изучение и целостное описание: 1) полифункцио

нальность и полиструктурность психики, " пересечение" функций и структур, трудность определения структур, реализующих конкретную функцию; 2) большая подвижность, изменчивость "вектора" сознания; 3) распределенность в пространстве и размытость границ психических явлений; 4) недоступность для непосредственного наблюдения внутренних процессов и механизмов психических явлений; 5) высокая адаптивность психики .

Как отмечает В. А. Ганзен: "В психологии системный подход позволяет интегрировать и систематизировать накопленные знания, преодолевать их излишнюю избыточность, находить инварианты психологических описаний, избегать недостатков локального подхода, повышать эффективность системных исследований и процесса обучения, формулировать новые научные гипотезы, создавать системные описания психических явлений" .

Довольно влиятельны системные идеи в образовании, где применяются различные образовательные системы, системное представление предметного знания, употребление понятийного аппарата общей теории систем, формирование навыков системного подхода и системной аналитики. Особенно медленно проникают системные идеи в культуру.

Социальная транскрипция системности связана с применением в социологии, экономической науке и политологии. Все три науки оперируют понятиями соответственно социальная, экономическая и политическая системы, используют системность как метод познания и моделирования. Наиболее важные проблемы практической жизни общества:

формирование рыночной экономики, обеспечивающей взаимодействие и реализацию интересов различных субъектов: собственников, производителей, потребителей, индивидов, коллективов, общества и государства;

становление социальной системы общества, включающей организацию социальной жизни, социальную защиту населения, социализацию индивидов, их адаптацию и развитие;

развитие политической системы общества, объединяющей правовое государство, многопартийную систему, демократию. При этом особенно важно широкое внедрение системного подхода в государственное управление. Можно согласиться с Н. Р. Нижник

и О. А. Машковым в том, что роль и значение системного подхода не ограничиваются сферой государственного управления, ибо само государственное управление является атрибутом системы и все процессы управления - это процессы взаимосвязи систем и их компонентов . Подход особенно эффективен в стратегическом планировании и управлении, анализе государственной политики, создании законов, разработке и реализации политических реформ.

Наконец, наиболее развитой трактовкой системности выступает технократическая, для которой свойствены количественный, математизированный системный подход, применяемый при конструировании технических образцов, налаживании производства. В экологии получают существенное развитие идеи равновесия экологических систем, устойчивого развития, сохранения балансов и т.п.

Системность и будущее

Исключительно значение системности в прогнозировании развития систем и процессов. Системный метод выступает одним из базовых методов прогнозирования, роль которого в прогнозировании недооценивается. В фактографических методах прогнозирования (фактографический, статистический, прогнозная экстраполяция, исторических и математических аналогий и др.) системность присутствует в виде системы фактов, необходимой и достаточной для прогнозного вывода, а в экспертных методах прогнозирования (экспертный, матричный, дельфийский и т.п.) в виде системы оценок. Прогностическая роль системных представлений нередко сводится к тому, что моделируются состояния системы на различных этапах ее развития. При построении трендовых моделей, выявляющих зависимость прогнозируемого показателя от времени y =f (t), принципиально важен структурный анализ модели системы и возможных факторов среды, которые могут нарушить эту функцию посредством качественного изменения системы.

Значение системности в различных ее аспектах в будущем, несомненно, будет возрастать. Человечество начинает ощущать системность во всех аспектах своей деятельности. Прежде всего это касается планетарного аспекта. В. И. Вернадский, выдвинувший идею ноосферы, по сути предсказал особый вид планетарной системности.

Он писал: "Мы присутствуем и жизненно участвуем в создании в биосфере нового геологического фактора, небывалого в ней по мощности... Закончен после многих сотен тысяч лет неуклонных стихийных стремлений охват всей поверхности биосферы единым социальным видом животного царства - человеком.

Нет на Земле уголка для него недоступного. Нет пределов возможному его размножению. Научной мыслью и государственно организованной, ею направляемой техникой, своей жизнью человек создает в биосфере новую биогенную силу...

Жизнь человечества, при всей ее разнородности, стала неделимой, единой. Событие, происшедшее в захолустном уголке любой точки любого континента или океана, отражается и имеет следствия - большие и малые - в ряде других мест, всюду на поверхности Земли. Телеграф, телефон, радио, аэропланы, аэростаты охватили весь земной шар.

Создание ноосферы из биосферы есть природное явление, более глубокое и мощное в своей основе, чем человеческая история...

Это новая стадия в истории планеты, которая не позволяет пользоваться для сравнения, без поправок, историческим ее прошлым. Ибо эта стадия создает по существу новое в истории Земли, а не только в истории человечества" .

В начале ХХІ ст., когда человечество не только освоило практически всю Землю, но и стало собирать горький урожай в виде экологических, климатических, техногенных и иных бедствий и катастроф, неизбежно должно наступить отрезвление относительно бесконечности планеты и вседозволенности действий людей. Без этого отрезвления человечество потеряет свое будущее. Его будет ждать только один исход - бездна.

"...Все человечество, вместе взятое, - писал Вернадский, - представляет ничтожную массу вещества планеты. Мощь его связана не с его материей, но с его мозгом, с его разумом и направленным этим разумом его трудом... Ноосфера есть новое геологическое явление на нашей планете. В ней впервые человек становится крупнейшей геологической силой. Он может и должен перестраивать своим трудом и мыслью область своей жизни..." . Только системное видение мира, своего места в нем, понимание того, что любое целое: и человеческая жизнь, и планета легко теряют свою системную целостность, утратив значимые элементы и связи. Может быть, еще не погибла та

бабочка, описанная американским писателем-фантастом и мыслителем Рэем Брэдбери (1920 г. рожд.), которая была в начале цепочки, ведущей к гибели мира?

Авдеев Р. Ф. Философия информационной цивилизации. - М.: ВЛАДОС, 1994.

Ананьев Б. Г. Психологическая структура человека // Человек и общество. - Л.: Изд-во Ленингр. ун-та, 1967. - Вып. 2.

Анохин П. К. Очерки по физиологии функциональных систем. - М.: Медицина, 1975.

Баразгова Е. С. Американская социология (Традиции и современность). Курс лекций. - Екатеринбург: Деловая книга; Бишкек: Одиссей, 1997.

Беспалов В. А. Методологические проблемы системы управленческих решений. - М., 1986.

Вернадский В. И. Размышления натуралиста. Научная мысль как планетарное явление. - М.: Наука, 1977.

Ганзен В. А. Системные описания в психологии. - Л.: Изд-во Ленингр. ун-та, 1984.

Горский Ю. М. Системно-информационный анализ процессов управления. - Новосибирск: Наука, 1988.

Громов И. А., Мацкевич А. Ю., Семенов В. А. Западная теоретическая социология. - С.-Пб., 1997.

Дружинин В. В., Конторов Д. С. Проблемы системологии (проблемы теории сложных систем). - М.: Сов. Радио, 1976.

История социологии: Учеб. пособ. / А. Н. Елсуков, Г. Н. Соколова, Т. Г. Румянцева, А. А. Грицаев; Под общ. ред. А. Н. Елсу-кова и др. - Минск: Высш. шк., 1997.

Капитонов Э. А. Социология ХХ века. - Ростов н/Д: Феникс, 1996.

Кокарева Т. А. Системный анализ процедур принятия управленческих решений. - М.: Лес. пром-сть, 1991.

Конт О. Дух позитивной философии (Слово о положительном мышлении). - СПб., 1910.

Кохановский В. П. Философия и методология науки: Учеб. для вузов. - Ростов н/Д.: Феникс, 1999.

Лесечко М. Д. Основи системного підходу: теорія, методологія, практика: Навч. посіб. - Львів: ЛРІДУ УАДУ, 2002.

Литвак В. М. Методы управления. - М.: Тандем, 1988.

Логика и методология системных исследований. - Одесса: Вы-ща шк., Головн. изд-во, 1977.

методологическое направление в науке, основная задача которого состоит в разработке методов исследования и конструирования сложноорганизованных объектов – систем разных типов и классов.

Отличное определение

Неполное определение ↓

системный подход

СИСТЕМНЫЙ ПОДХОД - направление философии и методологии науки, специально-научного познания и социальной практики, в основе которого лежит исследование объектов как систем. С. п. ориентирует исследование на раскрытие целостности объекта и обеспечивающих ее механизмов, на выявление многообразных типов связей сложного объекта и сведение их в единую теоретическую картину. Понятие «С. п.» (англ. «systems approach») стало широко употребляться с конца 60-х - начала 70-х гг. 20 в. в англоязычной и рус. философской и системной литературе. Близкими по содержанию к «С. п.» являются понятия «системные исследования», «принцип системности», «общая теория систем» и «системный анализ». С. п.-междисциплинарное философско-методологическое и научное направление исследований. Непосредственно не решая философских проблем, С. п. нуждается в философском истолковании своих положений. Важную часть философского обоснования С. п. составляет системности принцип. Исторически идеи системного исследования объектов мира и процессов познания возникли еще в античной философии (Платон, Аристотель), получили широкое развитие в философии Нового времени (И. Кант, Ф. Шеллинг), исследовались К. Марксом применительно к экономической структуре капиталистического общества. В созданной Ч. Дарвином теории биологической эволюции были сформулированы не только идея, но представление о реальности надорганизменных уровней организации жизни (важнейшая предпосылка системного мышления в биологии). С. п. представляет собой определенный этап в развитии методов познания, исследовательской и конструкторской деятельности, способов описания и объяснения природы анализируемых или искусственно создаваемых объектов. Принципы С. п. приходят на смену широко распространенным в 17-19 вв. концепциям механицизма и противостоят им. Наиболее широкое применение методы С. п. находят при исследовании сложных развивающихся объектов - многоуровневых, иерархических, самоорганизующихся биологических, психологических, социальных и др. систем, больших технических систем, систем «человек-машина» и т.д. К числу важнейших задач С. п. относятся: 1) разработка средств представления исследуемых и конструируемых объектов как систем; 2) построение обобщенных моделей системы, моделей разных классов и специфических свойств систем; 3) исследование структуры теорий систем и различных системных концепций и разработок. В системном исследовании анализируемый объект рассматривается как определенное множество элементов, взаимосвязь которых обусловливает целостные свойства этого множества. Основной акцент делается на выявлении многообразия связей и отношений, имеющих место как внутри исследуемого объекта, так и в его взаимоотношениях с внешним окружением, средой. Свойства объекта как целостной системы определяются не только и не столько суммированием свойств его отдельных элементов, сколько свойствами его структуры, особыми системообразующими, интегративными связями рассматриваемого объекта. Для понимания поведения систем (прежде всего целенаправленного) необходимо выявить реализуемые данной системой процессы управления - формы передачи информации от одних подсистем к др. и способы воздействия одних частей системы на др., координацию низших уровней системы со стороны элементов ее высшего уровня управления, влияние на последние всех остальных подсистем. Существенное значение в С. п. придается выявлению вероятностного характера поведения исследуемых объектов. Важной особенностью С. п. является то, что не только объект, но и сам процесс исследования выступает как сложная система, задача которой, в частности, состоит в соединении в единое целое различных моделей объекта. Системные объекты очень часто бывают не безразличны к процессу их исследования и во многих случаях могут оказывать существенное воздействие на него. В условиях развертывания научно-технической революции во второй половине 20 в. происходит дальнейшее уточнение содержания С. п. - раскрытие его философских оснований, разработка логических и методологических принципов, дальнейший прогресс в построении общей теории систем. С. п. является теоретической и методологической основой системного анализа. Предпосылкой проникновения С. п. в науку в 20 в. явился, прежде всего, переход к новому типу научных задач: в целом ряде областей науки центральное место начинают занимать проблемы организации и функционирования сложных объектов; познание оперирует системами, границы и состав которых далеко не очевидны и требуют специального исследования в каждом отдельном случае. Во второй половине 20 в. аналогичные по типу задачи возникают и в социальной практике: в социальном управлении вместо превалировавших прежде локальных, отраслевых задач и принципов ведущую роль начинают играть крупные комплексные проблемы, требующие тесного взаимоувязывания экономических, социальных, экологических и иных аспектов общественной жизни (напр., глобальные проблемы,комплексныепроблемысоциально-экономического развития стран и регионов, проблемы создания современных производств, комплексов, развития городов, мероприятия по охране природы и т.п.). Изменение типа научных и практических задач сопровождается появлением общенаучных и специально-научных концепций, для которых характерно использование в той или иной форме основных идей С. п.. Наряду с распространением принципов С. п. на новые сферы научного знания и практики, с середины 20 в. начинается систематическая разработка этих принципов в методологическом плане. Первоначально методологические исследования группировались вокруг задач построения общей теории систем. Однако развитие исследований в этом направлении показало, что совокупность проблем методологии системного исследования существенно выходит за рамки задач разработки только общей теории систем. Для обозначения этой более широкой сферы методологических проблем и стал широко применяться термин «С. п.». С. п. не существует в виде строгой теоретической или методологической концепции: он выполняет свои эвристические функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответствующей ориентации конкретных исследований. Эта ориентация осуществляется двояко. Во-первых, содержательные принципы С. п. позволяют фиксировать недостаточность старых, традиционных предметов изучения для постановки и решения новых задач. Во-вторых, понятия и принципы С. п. существенно помогают строить новые предметы изучения, задавая структурные и типологические характеристики этих предметов и таким образом способствуя формированию конструктивных исследовательских программ. Роль С. п. в развитии научного, технического и практически-ориентированного знания состоит в следующем. Во-первых, понятия и принципы С. п. выявляют более широкую познавательную реальность по сравнению с той, которая фиксировалась в прежнем знании (напр., понятие биосферы в концепции В. И. Вернадского, понятие биогеоценоза в современной экологии, оптимальный подход в экономическом управлении и планировании и т.п.). Во-вторых, в рамках С. п. разрабатываются новые, по сравнению с предшествующими этапами развития научного познания, схемы объяснения, в основе которых лежит поиск конкретных механизмов целостности объекта и выявление типологии его связей. В-третьих, из важного для С. п. тезиса о многообразии типов связей объекта следует, что любой сложный объект допускает несколько расчленений. При этом критерием выбора наиболее адекватного расчленения изучаемого объекта может служить то, насколько в результате удается построить «единицу» анализа, позволяющую фиксировать целостные свойства объекта, его структуру и динамику. Широта принципов и основных понятий С. п. ставит его в тесную связь с др. методологическими направлениями современной науки. По своим познавательным установкам С. п. имеет много общего со структурализмом и структурно-функциональным анализом, с которыми его связывает не только оперирование понятиями системы, структуры и функции, но и акцент на изучение разнотипных связей объекта. Вместе с тем принципы С. п. обладают более широким и более гибким содержанием; они не подверглись такой жесткой концептуализации и абсолютизации, которая была характерна для некоторых интерпретаций структурализма и структурно-функционального анализа. И.В. Блауберг, Э.Г. Юдин, В.Н. Садовский Лит.: Проблемы методологии системного исследования. М., 1970; Блауберг И.В., Юдин Э.Г. Становление и сущность системного подхода. М., 1973; Садовский В.Н. Основания общей теории систем: Логико-методологический анализ. М., 1974; Уемов А.И. Системный подход и общая теория систем. М., 1978; Афанасьев В.Г. Системность и общество. М., 1980; Блауберг И.В. Проблема целостности и системный подход. М., 1997; Юдин Э.Г. Методология науки: Системность. Деятельность. М, 1997; Системные исследования. Ежегодник. Вып. 1-26. М., 1969-1998; Churchman C.W. The Systems Approach. N.Y., 1968; Trends in General Systems Theory. N.Y., 1972; General Systems Theory. Yearbook. Vol. 1-30. N.Y, 1956-85; Critical Systems Thinking. Directed Readings. N.Y, 1991.

Учреждение Образования «Белорусский Государственный Университет Информатики и Радиоэлектроники»

Кафедра философии

Системный Подход в Современной Науке и Технике

(реферат)

Иванов И.И.

аспирант кафедры ХХХ

Введение............................................................................................ 3

1 Понятие «система» и «системный подход»................................. 5

2 Онтологический смысл понятия «система»................................. 8

3 Гносеологический смысл понятия «система»............................. 10

4 Разработка сущности системы в естественных науках................ 12

5 «Система» и «системный подход» в наше время........................ 14

Заключение........................................................................................ 26

Литература........................................................................................ 29

Введение

Прошло более полувека системного движения, инициированного Л. фон Берталанфи. За это время идеи системности, понятие системы и системный подход получили всеобщее признание и широкое распространение. Созданы многочисленные системные концепции.

Пристальный анализ показывает, что множество рассматриваемых в системном дви­жении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности, а в его защиту выдвигается все большее число аргументов.

В основе системного подхода, как методологии научного познания, лежит исследование объектов как систем. Системный подход способствует адекватному и эффективному раскрытию сущности проблем и успешному их решению в различных областях науки и техники.

Системный подход направлен на выявление многообразных типов связи сложного объекта и сведения их в единую теоретическую картину.

В различных областях науки центральное место начинают занимать проблемы организации и функционирования сложных объектов, изучение которых без учета всех аспектов их функционирования и взаимодействия с остальными объектами и системами просто немыслимо. Более того, многие из таких объектов представляют сложное объединение различных подсистем, каждая из которых в свою очередь тоже является сложным объектом.

Системный подход не существует в виде строгих методологических концепций. Он выполняет свои эвристические функции, оставаясь совокупностью познавательных принципов, основной смысл которых состоит в соответственном ориентировании конкретных исследований.

Преимуществами системного подхода прежде всего является то, что он расширяет область познания по сравнению с той, что существовала раньше. Системный подход, основываясь на поиске механизмов целостности объекта и выявления технологии его связей, позволяет по-новому объяснить сущность многих вещей. Широта принципов и основных понятий системного подхода ставит их в тесную связь с другими методологическими направлениями современной науки.

1 Понятие «система» и «системный подход»

Как указано выше, - в настоящее время системный подход используется практически во всех областях науки и техники: кибернетике, для анализа различных биологических систем и систем воздействия человека на природу, для построения систем управления транспортом, космическими полетами, различных систем организации и управления производством, теории построения информационных систем, во множестве других, и даже в психологии.

Биология явилась одной из первых наук, в которой объекты исследования начали рассматриваться как системы. Системный подход в биологии предполагает иерархическое построение, где элементы - система (подсистема), которая взаимодействует с другими системами в составе большой системы (надсистемы). При этом последовательность изменений большой системы основывается на закономерностях в иерархически соподчи­ненной структуре, где «причинно-следственные связи прокатываются сверху вниз, задавая существенные свойства нижестоящим». Иными словами, исследуется все многообразие связей в живой природе, при этом на каждом уровне биологической организации выделяются свои особые ведущие связи. Представление о биологических объектах как о системах позволяет по-новому подойти к некоторым проблемам, таким как развитие некоторых аспектов проблемы взаимоотношения особи с окружающей средой, а также дает толчок неодарвиновской концепции, обозначаемой иногда как макроэволюция.

Если обратиться к социальной философии, то и здесь анализ основных проблем данной области приводит к вопросам об обществе как целостности, а точнее, - об его системности, о критериях членения исторической действительности, об элементах общества как системы.

Популярности системного подхода способствует стремительное увеличение числа разработок во всех областях науки и техники, когда исследователь, используя стандартные методы исследования и анализа физически не способен справиться с таким объемом информации. Отсюда следует вывод, что только используя системный принцип можно разобраться в логических связях между отдельными фактами, и только этот принцип позволит более успешно и качественно проектировать новые исследования.

При этом важность понятия «система» очень велика в современной философии, науке и технике. Наряду с этим в последнее время все больше возрастает потребность в выработке единого подхода к разнообразным системным исследованиям в современном научном познании. Большинство исследователей наверняка осознает, что все же существует некоторая реальная общность в этом многообразии направлений, которая должна вытекать из единого по­нимания системы. Однако реальность как раз состоит в том, что единого понимания системы до сих пор не выработано.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмы­слению понятия система, другая группа определений осно­вывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы.

Работы в области теоретических основ системных исследований охватывают такие проблемы как:

· онтологические основания системных исследований объектов мира, системность как сущность мира;

· гносеологические основания системных исследований, системные принципы и уста­новки теории познания;

· методологические установления системного познания.

Смешение этих трех аспектов подчас создает ощущение противоречивости работ разных авторов. Этим же определяется противоречивость и множественность определений самого понятия «система». Одни авторы разрабатывают его в онтологическом смысле, другие - в гносеологическом, причем в разных аспектах гносеологии, третьи - в методологическом.

Вторая характерная черта системной проблематики состоит в том, что на всем протя­жении развития философии и науки в разработке и применении понятия «система» явно выделяются три направления: одно связано с использованием термина «система» и нестро­гим его толкованием: другое - с разработкой сущности системной концепции, однако, как правило, без использования этого термина: третье - с попыткой синтеза концепции системности с понятием «система» в его строгом определении.

При этом исторически всегда возникала двойственность толкования в зависимости от того с онтологических или гносеологических позиций ведется рассмотрение. Поэтому исходным основанием для выработки единой системной концепции, в том числе и понятия «система», является прежде всего разделение всех вопросов в историческом рассмотрении по принципу их принадлежности к онтологическим, гносеологическим и методологическим основаниям.

2 Онтологический смысл понятия «система»

При описании реальности в Древней Греции и фактически до XIX в. в науке не было четкого разделения между самой реальностью и ее идеальным, мысленным, рациональным представлением. Онтологический аспект реальности и гносеологический аспект знания об этой реальности отождествлялись в смысле абсолютного соответствия. Поэтому весьма длительное применение термина «система» имело ярко выраженный онтологический смысл.

В Древней Греции значение этого слова было связано, прежде всего, с социально-бытовой деятельностью и применялось в значении устройство, организация, союз, строй и т.п.. Далее этот же термин переносится на естественные объекты. Вселенную, филологические и музыкальные сочетания и т.д.

Важно то, что формирование понятия «система» из термина «система» идет через осознание целостности и расчлененности как естественных, так и искусственных объектов. Это и получило выражение в толковании системы как «целого, составленного из частей».

Фактически не прерываясь, эта линия осознания систем как целостных и одновременно расчлененных фрагментов реального мира идет через Новое время, философию Р. Декарта и Б. Спинозы, французских материалистов, естест­вознание XIX в., являясь следствием пространственно-механического видения мира, когда все другие формы реальности (свет, электромагнитные поля) рассматривались лишь как внешнее проявление пространственно-механических свойств этой реальности.

Фактически данный подход предусматривает некую первичную расчлененность целого, составленного в свою очередь из целостностей, разделенных (пространственно) уже самой природой и находящихся во взаимодействии. В этом же смысле широко используется термин «система» и в наши дни. Именно за этим пониманием системы закрепился термин материальная система как целостная совокупность мате­риальных объектов.

Другое направление онтологической линии предусматривает использование термина «система» для обозначения целостности, определяемой некоторой организующей общностью этого целого.

В онтологическом подходе можно выделить два направления: система как совокупность объектов и система как совокупность свойств.

В целом использование термина «система» в онтологическом аспекте малопродуктивно для дальнейшего изучения объекта. Онтологическая линия связала понимание системы с понятием «вещь», будь то «вещь органичная», либо «вещь, составленная из вещей». Главным недостатком в онтологической линии понимания системы является отождествление понятия «система» с объектом или просто с фрагментом действительности. На самом деле использование термина «система» применительно к материальному объекту некорректно, так как всякий фрагмент действительности имеет бесконечное число проявлений и его познание распадается на множество сторон. Поэтому даже для природно расчлененного объекта мы можем дать только общее указание на факт наличия взаимодействий, без их конкретизации, так как не выделено, какие свойства объекта участвуют во взаимодей­ствиях.

Онтологическое понимание системы как объекта не позволяет перейти к процессу познания, так как не дает методологии исследования. В связи с этим, понимание си­стемы исключительно в представленном аспекте ошибочно.

3 Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной фи­лософией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

· полноту исходных оснований (элементов, из которых выводятся остальные знания);

· выводимость (определяемость) знаний;

· целостность построенного знания.

Причем под системой знания это направление имело в виду не зна­ния о свойствах и отношениях реальности (все попытки онтологического понимания си­стемы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

В результате развития гносеологического направления с понятием «си­стема» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерно­сти включает следующие шаги:

· нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;

· поиск вида математической зависимости между этими свойствами;

· установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных, а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5 «система» и «системный подход» в наше время

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания си­стемности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математи­ческими моделями. Возможности математизации определяли как выбор объекта исследо­вания, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение мно­гообразия свойств «органичных целых». Систем­ное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности.

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трак­туют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Посте­пенно формируется употребление понятия «система» как сложного объекта, органи­зованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата.

Впервые обсуждение проблем системности явилось саморефлексией системных кон­цепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В целом характерно, что в явном виде не предпринимаются попытки вывести из онтологического понимания системы ее гносеологическое понимание. Один из ярких представителей понимания системы как набора переменных, пред­ставляющих набор свойств, Дж. Клир, подчеркивает, что он оставляет в стороне вопрос о том, какими научными теориями, философией науки или унаследованным генетическим врожденным знанием определяется «осмысленный выбор свойств». Эта ветвь понимания системы как набора переменных дает начало математической теории систем, где понятие «система» вводится с помощью формализации и определяется в теоретико-множественных терминах.

Так постепенно складывается положение, что онтологическое и гносеологическое понимание системы переплетаются. В прикладных областях систему трактуют как «це­лостный материальный объект», а в теоретических областях науки системой называют набор переменных и совокупность дифференциальных уравнений.

Наиболее явной причиной невозможности достичь единого понимания системы являются отличия, которые связаны с ответом на следующие вопросы:

1. Относится ли понятие система

· к объекту (вещи) в целом (любому или специфическому),

· к совокупности объектов (природно или искусственно расчлененной),

· не к объекту (вещи), но к представлению объекта,

· к представлению объекта через совокупность элементов, находящихся в определенных отношениях,

· к совокупности элементов, находящихся в отношениях?

2. Выдвигается ли для совокупности элементов требование образовывать целостность, единство (определенную или не конкретизированную)?

3. Является ли «целое»

· первичным по отношению к совокупности элементов,

· производным от совокупности элементов?

4. Относится ли понятие система

· ко всему, что «различается исследователем как система»,

· только к такой совокупности, Которая включает специфический «системный» признак?

5. Все есть система или наряду с системами могут рассматриваться «не системы»?

В зависимости от того или иного ответа на данные вопросы получаем множество определений. Но если большое число авторов на протяжении 50 лет определяют систему через разные характеристики, то можно ли в их определениях все же усмотреть что-то общее? К какой группе понятий, к какой группе категорий относится понятие «система», если взглянуть на него с позиций множества существующих определений? Становится ясно, что все авторы говорят об одном и том же: через понятие система они стремятся отразить форму представления предмета научного познания. Причем в зависимости от этапа познания мы имеем дело с разными представлениями предмета, а значит, меняется и определение системы. Так, те авторы, которые хотят применить это понятие к «ор­ганичным целым», к «вещи» - относят его к выделенному объекту познания, когда предмет познания еще не выделен. Это со­ответствует самому первому акту познавательной деятельности.

Следующее определение с некоторыми оговорками отражает уже сам акт выделения предмета познания: «Понятие система стоит на самом верху иерархии понятий. Системой является все, что мы хотим рассматривать как систему...».

Далее, утверждение, что «система» - это список переменных... относя­щихся к некоторой главной проблеме, которая уже определена, позволяет перейти на следую­щий уровень, на котором выделена определенная сторона, срез объекта и совокупность характеризующих эту сторону свойств. Те, кому свойственно представление предмета познания в виде уравнений, приходят к определению системы через совокупность уравнений.

Тем самым множественность и разнообразие определений системы вызваны различием этапов формирования предмета научного познания.

Таким образом, можно сделать вывод, что система есть форма представления предмета научного познания. И в этом смысле она является фундаментальной и уни­версальной категорией. Все научное знание с момента его зарождения в Древней Греции строило предмет познания в виде системы.

Многочисленные дискуссии по поводу всех предлагавшихся определений, как правило, поднимали вопрос: кем и чем задаются эти важнейшие формирующие систему «системообразующие», «определенные», «ограничивающие» признаки? Оказывается, что ответ на эти вопросы общий, если учесть, что форма представления предмета познания должна соотноситься с самим объектом познания. Следовательно, именно объект определит то интегративное свойство (выделяемое субъектом), которое делает целостность «опре­деленной». Именно в этом смысле следует трактовать положение, что целое предшествует совокупности элементов. Отсюда следует, что определение системы должно включать не только совокупность, композицию из элементов и отношений, но и целостное свойство самого объекта, отно­сительно которого и строится система.

Принцип системности лежит в основе методологии, выражающий философские аспекты системного подхода и служащий основой изучения сущности и всеобщих черт системного знания, его гносеологических оснований и категориально-понятийного аппарата, истории системных идей и системоцентрических приемов мышления, анализа системных закономерностей различных областей объективной действительности. В реальном процессе научного познания конкретно-научного и философского направлений системные знания взаимодополняют друг друга, образуя систему знаний в системность. В истории познания выделение системных черт целостных явлений было связано с изучением отношений части и целого, закономерностей состава и структуры, внутренних связей и взаимодействий элементов, свойств интеграции, иерархии, субординации. Дифференциация научного знания порождает существенную потребность в системном синтезе знаний, в преодолении дисциплинарной узости, порожденной предметной или методологической специализацией знания.

С другой стороны, умножение разноуровневых и разнопорядковых знаний о предмете обусловливает необходимость в таком системном синтезе, который расширяет понимание предмета познания при исследовании все более глубоких оснований бытия и более системного изучения внешних взаимодействий. Важное значение имеет также и системный синтез разнообразных знаний, являющийся средством перспективного планирования, предвидения результатов практической деятельности, моделирования вариантов развития и их последствий и т. п.

Подводя итоги, видно, что в процессе человеческой деятельности принцип системности и следствия из него наполняются конкретным практическим содержанием, при этом реализация данного принципа может идти по следующим основным стратегическим направлениям.

1. Исследуются реально существующие объекты, рассматриваемые как системы, на основе системного подхода, путем выделения в этих объектах системных свойств и закономерностей, которые в дальнейшем могут быть изучены (отображены) частными методами конкретных наук.

2. На основе системного подхода, по априорному определению системы, уточняемому итерационно в процессе исследования, строится системная модель реального объекта. Эта модель в дальнейшем заменяет реальный объект в процессе исследования. При этом исследование системной модели может быть реализовано на основе как системологических концепций, так и частных методов конкретных наук.

3. Совокупность системных моделей, рассматриваемая отдельно от моделируемых объектов, сама может представлять собой объект научного исследования. При этом рассматриваются наиболее общие инварианты, способы построения и функционирования системных моделей, определяется область их применения.

Так, например, используем определение, представленное в : «Система» есть множество связанных между собой компонентов той или иной природы, упорядоченное по отношениям, обладающим вполне определенными свойствами; это множество характеризуется единством, которое выражается в интегральных свойствах и функциях множества. Соответственно отметим, что во-первых: любые системы состоят из исходных единиц – компонентов. В качестве компонентов системы могут рассматриваться объекты, свойства, связи, отношения, состояния, фазы функционирования, стадии развития. В рамках данной системы и на данном уровне абстракции компоненты представляются как неделимые, целостные и различимые единицы, то есть исследователь абстрагируется от их внутреннего строения, но сохраняет сведения об их эмпирических свойствах.

Составляющие систему объекты могут быть материальными (например, атомы, составляющие молекулы, клетки, составляющие органы) или идеальными (например, различные виды числа составляют элементы теоретической системы, называемой теорией чисел).

Свойства системы, специфичные для данного класса объектов могут стать компонентами системного анализа. Например, свойствами термодинамической системы могут быть температура, давление, объем, а напряженность поля, диэлектрическая проницаемость среды поляризация диэлектрика - по сути свойства электростатических систем. Свойства могут быть как изменяющимися, так и неизменными при данных условиях существования системы. Свойства могут быть внутренними (собственными) и внешними. Собственные свойства зависят только от связей (взаимодействий) внутри системы, это свойства системы «самой по себе». Внешние свойства актуально существуют лишь тогда, когда имеются связи, взаимодействия с внешними объектами (системами).

Связи изучаемого объекта также могут быть компонентами при его системном анализе. Связи имеют вещественно-энергетический, субстанциальный характер. Аналогично свойствам, связи могут быть внутренними и внешними для данной системы. Так, если мы описываем механическое движение тела как динамическую систему, то по отношению к этому телу связи имеют внешний характер. Если же рассмотреть более крупную систему из нескольких взаимодействующих тел, то те же механические связи следует считать внутренними по отношению к этой системе.

Отношения отличаются от связей тем, что не имеют ярко выраженного вещественно-энергетического характера. Тем не менее, их учет важен для понимания той или иной системы. Например, пространственные отношения (выше, ниже, левее, правее), временные (раньше, позже), количественные (меньше, больше).

Состояния и фазы функционирования используются при анализе систем, функционирующих на протяжении длительного промежутка времени, причем сам процесс функционирования (последовательность состояний во времени) познается путем выявления связей и отношений между различными состояниями. Примерами могут быть фазы сердечного ритма, сменяющие друг друга процессы возбуждения и торможения в коре головного мозга и др.

В свою очередь этапы, стадии, ступени, уровни развития выступают компонентами генетических систем. Если состояния и фазы функционирования относятся к поведению во времени системы, сохраняющей свою качественную определенность, то смена этапов развития связана с переходом системы в новое качество.

Во-вторых – между компонентами множества, образующего систему, существуют системообразующие связи и отношения, благодаря которым реализуется специфическое для системы единство. Система обладает общими функциями, интегральными свойствами и характеристиками, которыми не обладают ни составляющие её элементы, взятые по отдельности, ни простая «арифметическая сумма» элементов. Важной характеристикой внутренней целостности системы является ее автономность или относительная самостоятельность поведения и существования. По степени автономности можно в известной степени судить об уровне и степени их относительной организованности и самоорганизованности.

Важными характеристиками любых систем являются присущие им организация и структура, к которым привязывают математическое описание систем.

Чтобы подчеркнуть справедливость приведенных рассуждений воспользуемся определением, приведенным в работе , согласно которому: «Система – множество взаимосвязанных элементов, образующее единое целое».

Что касается относительности понятий «компонент» («элемент») и «система» («структура») то следует отметить, что любая система может, в свою очередь, выступать в качестве компонента или подсистемы другой системы. С другой стороны, компоненты, выступающие при анализе системы как нерасчлененные целые, при более детальном рассмотрении сами по себе проявляют себя как системы. В любом случае связи элементов внутри подсистемы сильнее, чем связи между подсистемами, и сильнее, чем связи между элементами, принадлежащими различным подсистемам. Существенно также то, что количество типов элементов (подсистем) ограничено, внутреннее разнообразие и сложность системы определяется, как правило, разнообразием межэлементных связей, а не разнообразием типов элементов.

При анализе любых систем важно выяснить характер связи подсистем, иерархических уровней внутри системы; в системе сочетаются взаимосвязь ее подсистем по одним свойствам и отношениям и относительная независимость по другим свойствам и отношениям. В самоуправляемых системах это выражается, в частности, в сочетании централизации деятельности всех подсистем с помощью центральной управляющей инстанции с децентрализацией деятельности уровней и подсистем, обладающих относительной автономностью.

Также следует учитывать, что сложная система - это результат эволюции более простой системы. Система не может быть изучена, если не изучен ее генезис.

Иначе говоря, познание того или иного объекта как системы должно включать в себя следующие основные моменты: 1) определение структуры и организации системы; 2) определение собственных (внутренних) интегральных свойств и функций системы; 3) определение функций системы как реакций на выходах в ответ на воздействие других объектов на входы; 4) определение генезиса системы, т.е. способов и механизмов ее образования, а для развивающихся систем - способов их дальнейшего развития.

Особенно важной характеристикой системы является ее структура. Унифицированное описание систем на структурном языке предполагает определенные упрощения и абстракции. Если при определении компонентов системы можно абстрагироваться от их строения, рассматривая их как нерасчлененные единицы, то следующий шаг заключается в отвлечении от эмпирических свойств компонентов, от их природы (физической, биологической и пр.) при сохранении различий по качеству.

Способы связи и виды отношений между компонентами системы зависят как от природы компонентов, так и от условий существования системы. Для понятия структуры специфичен особый и в то же время универсальный тип отношений и связей - отношения композиции элементов. Отношения порядка (упорядоченности) в системе существуют в двух видах: устойчивые и неустойчивые применительно к точно определенным условиям существования системы. Понятие структуры отображает устойчивую упорядоченность. Структура системы есть совокупность устойчивых связей и отношений, инвариантных по отношению к вполне определенным изменениям, преобразованиям системы. Выбор этих преобразований зависит от границ и условий существования системы. Структуры объектов (систем) того или иного класса описываются в виде законов их строения, поведения и развития.

Также отметим, что при удалении из системы одного или нескольких элементов структура может остаться неизменной, а система может сохранить свою качественную определенность (в частности, работоспособность). Удаленные элементы в некоторых случаях могут быть без ущерба заменены новыми, инокачественными. В этом проявляется преобладание внутренних структурных связей над внешними. Структура не существует как независимое от элементов организующее начало, а сама определяется составляющими ее элементами. Совокупность элементов не может сочетаться произвольным образом, следовательно, способ связи элементов (структура будущей системы) частично определяется свойствами элементов, взятых для ее построения. Например, структура молекулы определяется (частично) тем, из каких атомов она состоит. Вхождение элемента в структуру более высокого уровня мало сказывается на его внутренней структуре. Ядро атома не изменяется, если атом войдет в состав молекулы, а микросхеме «все равно», в составе какого устройства она функционирует. Элемент может выполнять присущие ему функции только в составе системы, только в координации с соседними элементами. В некоторых случаях даже сколько-нибудь длительное сохранение элементом своей качественной определенности невозможно за пределами системы.

Таким образом, при использовании системного подхода на первом этапе стоит задача представления изучаемого объекта в виде системы.

На втором этапе необходимо произвести системное исследование. Чтобы получить полное и правильное представление о системе, необходимо осуществлять это исследование в предметном, функциональном и историческом аспектах.

Целью предметного анализа является ответ на такие вопросы как: каков состав системы, и какова связь между компонентами ее структуры. В основе предметного исследования лежат главные свойства системы – целостность и делимость. При этом компонентный состав и набор связей между компонентами системы должны быть необходимыми и достаточными для существования самой системы. Очевидно, строгое разделение компонентного и структурного анализа невозможно ввиду их диалектического единства, поэтому эти исследования проводятся параллельно. Также необходимо установить место рассматриваемой системы в надсистеме и выявить все ее связи с другими элементами этой надсистемы. На этом этапе предметного анализа производится поиск ответов на вопросы о составе надсистемы, в которую входит исследуемая система и о связи исследуемой системы с другими системами через надсистему.

Следующим важным аспектом системного исследования является функциональный аспект. По сути, он представляет собой анализ динамики тех связей, которые были выявлены и идентифицированы на этапе предметного анализа и отвечает на вопросы о том как работает данный компонент системы и как работает исследуемая система в данной надсистеме.

Что касается исторического исследования, то его можно отнести к динамике развития системы, причем жизненный цикл любой системы разделяют на несколько этапов: возникновение, становление, эволюция, разрушение или преобразование. Историческое исследование предполагает проведение генетического анализа, при котором прослеживается история развития системы и определяется текущая стадия ее жизненного цикла, и прогностического анализа, намечающего пути ее дальнейшего развития .

Подводя итоги приведенного анализа, отметим, что в основе системного подхода лежит рассмотрение каждой системы как некоторой подсистемы более общей системы. Что касается характеристик подсистемы, то они определяются требованиями, предъявляемыми к системе, стоящей на более высокой ступени иерархии, причем при проектировании или анализе подсистемы необходимо учитывать взаимодействие ее с другими подсистемами, стоящими на той же ступени иерархической лестницы. При использовании системного подхода необходимо учитывать из каких компонентов образована система и способ их взаимодействия. Также пристальное внимание заслуживает то, какие функции выполняет система и образующие ее компоненты и как она взаимосвязана с другими системами, как по горизонтали, так и по вертикали, каковы механизмы сохранения, совершенствования и развития системы. Подлежит изучению вопрос возникновения и развития системы.

Указанные этапы могут многократно повторяться, каждый раз уточняя представление об исследуемой системе, до тех пор, пока не будут рассмотрены все необходимые аспекты знания на требуемом уровне абстракции.

ЗАКЛЮЧЕНИЕ

Каждая эпоха имеет свой стиль мышления, определяе­мый многими факторами, и, прежде всего уровнем развития производительных сил, в том числе и науки, и обществен­ными отношениями. Реальная жизнь индивида, хочет он того или нет, оказывает непосредственное влияние на его мировоззрение, заставляет видеть мир сквозь призму совре­менности. Как бы талантлив и объективен ни был ученый, главный акцент в своих исследованиях он неизбежно бу­дет делать на тех явлениях, процессах, взаимодействиях, ко­торые в его эпоху больше всего волнуют общество. Иначе говоря, какова общественная жизнь, таково и миропонима­ние в целом.

Что касается истины, то, будучи по своему содержанию независимой от познающего субъекта, она в то же время может по-разному отражаться в сознании человека. Созна­ние же человека формируется обществом. Истина не явля­ется чем-то сплошным, ровным и одноцветным. Она, как и сама реальность, многогранна и неисчерпаема. Какую сто­рону, грань, оттенок истины признать за всю истину, в ка­кой степени приближения к абсолюту ее увидеть, во многом зависит от человека, живущего в данное время и в данном обществе. Вот почему понимание истины, относящейся к од­ним и тем же вещам, явлениям, процессам, разнится и ме­няется в разные эпохи и в разных общественных системах. Конкретное общество, конкретный образ жизни, так или иначе, изменяют видение мира человеком.

Отсюда любая абсолютизация значения какого-либо яв­ления, закона, процесса, взаимодействия, связанная с истол­кованием его как исчерпывающего многообразие реально­сти, глубоко ошибочна и препятствует конструктивному раз­витию теоретического познания и практики. Истина всегда актуальна. Актуализация знания - вот к чему сознательно или бессознательно стремится каждый ученый. Актуали­зация истины отнюдь не исключает наличия абсолютных истин. Вращение Земли вокруг Солнца - это абсолютная истина, но понимание этой истины, скажем, Коперником, отличается от ее понимания современным ученым. Как ви­дим, абсолютная истина также актуализируется, обогаща­ется новыми открытиями, новыми представлениями. Мето­дология системного познания и преобразования мира явля­ется эффективным средством актуализации знаний.

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из прин­ципов диалектики, так же как и категория «система» - это одна из категорий диалектического материализма. Се­годня понятие «система» и принцип системности стали иг­рать важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания про­исходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуа­ции, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разра­ботка отдельных моментов диалектического метода, способ­ствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, на­копленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потреб­ностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элемента диалек­тического метода как системы и выполняет свою специфи­ческую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необхо­димое методологическое условие, требование любого иссле­дования и практики. Одной из его фундаментальных харак­теристик является понятие системности бытия, а тем са­мым и единства наиболее общих законов его развития.

ЛИТЕРАТУРА

1. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4

2. Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.

3. Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина.- Мн., 2000.

4. Уемов А.И. Системный подход и общая теория систем. – М., 1978.

5. Садовский В. Н. Основания общей теории систем.- М., 1974

6. Клир Дж. Системология. Автоматизация решения системных задач.- М., 1990.

7. Флешиман B.C. Основы системологии. - М., 1982.

8. Балашов Е. П. Эволюционный синтез систем. - М., 1985.

9. Малюта А.Н. Закономерности системного развития. – Киев, 1990.

10. Тюхтин В.С. Отражение, система, кибернетика. – М., 1972.

11. Титов В.В. Системный подход: (Учебное пособие) /Высшие государственные курсы повышения квалификации руководящих, инженерно-технических и научных работников по вопросам патентоведения и изобретательства. – М., 1990.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то